Server IP : 184.154.167.98 / Your IP : 13.59.170.228 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 8.2.26 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /lib/clang/18/include/ |
Upload File : |
/*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __CLANG_CUDA_INTRINSICS_H__ #define __CLANG_CUDA_INTRINSICS_H__ #ifndef __CUDA__ #error "This file is for CUDA compilation only." #endif // sm_30 intrinsics: __shfl_{up,down,xor}. #define __SM_30_INTRINSICS_H__ #define __SM_30_INTRINSICS_HPP__ #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 #pragma push_macro("__MAKE_SHUFFLES") #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \ __Type) \ inline __device__ int __FnName(int __val, __Type __offset, \ int __width = warpSize) { \ return __IntIntrinsic(__val, __offset, \ ((warpSize - __width) << 8) | (__Mask)); \ } \ inline __device__ float __FnName(float __val, __Type __offset, \ int __width = warpSize) { \ return __FloatIntrinsic(__val, __offset, \ ((warpSize - __width) << 8) | (__Mask)); \ } \ inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \ int __width = warpSize) { \ return static_cast<unsigned int>( \ ::__FnName(static_cast<int>(__val), __offset, __width)); \ } \ inline __device__ long long __FnName(long long __val, __Type __offset, \ int __width = warpSize) { \ struct __Bits { \ int __a, __b; \ }; \ _Static_assert(sizeof(__val) == sizeof(__Bits)); \ _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ __Bits __tmp; \ memcpy(&__tmp, &__val, sizeof(__val)); \ __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \ __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \ long long __ret; \ memcpy(&__ret, &__tmp, sizeof(__tmp)); \ return __ret; \ } \ inline __device__ long __FnName(long __val, __Type __offset, \ int __width = warpSize) { \ _Static_assert(sizeof(long) == sizeof(long long) || \ sizeof(long) == sizeof(int)); \ if (sizeof(long) == sizeof(long long)) { \ return static_cast<long>( \ ::__FnName(static_cast<long long>(__val), __offset, __width)); \ } else if (sizeof(long) == sizeof(int)) { \ return static_cast<long>( \ ::__FnName(static_cast<int>(__val), __offset, __width)); \ } \ } \ inline __device__ unsigned long __FnName( \ unsigned long __val, __Type __offset, int __width = warpSize) { \ return static_cast<unsigned long>( \ ::__FnName(static_cast<long>(__val), __offset, __width)); \ } \ inline __device__ unsigned long long __FnName( \ unsigned long long __val, __Type __offset, int __width = warpSize) { \ return static_cast<unsigned long long>( \ ::__FnName(static_cast<long long>(__val), __offset, __width)); \ } \ inline __device__ double __FnName(double __val, __Type __offset, \ int __width = warpSize) { \ long long __tmp; \ _Static_assert(sizeof(__tmp) == sizeof(__val)); \ memcpy(&__tmp, &__val, sizeof(__val)); \ __tmp = ::__FnName(__tmp, __offset, __width); \ double __ret; \ memcpy(&__ret, &__tmp, sizeof(__ret)); \ return __ret; \ } __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int); // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= // maxLane. __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0, unsigned int); __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f, unsigned int); __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f, int); #pragma pop_macro("__MAKE_SHUFFLES") #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 #if CUDA_VERSION >= 9000 #if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300) // __shfl_sync_* variants available in CUDA-9 #pragma push_macro("__MAKE_SYNC_SHUFFLES") #define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \ __Mask, __Type) \ inline __device__ int __FnName(unsigned int __mask, int __val, \ __Type __offset, int __width = warpSize) { \ return __IntIntrinsic(__mask, __val, __offset, \ ((warpSize - __width) << 8) | (__Mask)); \ } \ inline __device__ float __FnName(unsigned int __mask, float __val, \ __Type __offset, int __width = warpSize) { \ return __FloatIntrinsic(__mask, __val, __offset, \ ((warpSize - __width) << 8) | (__Mask)); \ } \ inline __device__ unsigned int __FnName(unsigned int __mask, \ unsigned int __val, __Type __offset, \ int __width = warpSize) { \ return static_cast<unsigned int>( \ ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \ } \ inline __device__ long long __FnName(unsigned int __mask, long long __val, \ __Type __offset, \ int __width = warpSize) { \ struct __Bits { \ int __a, __b; \ }; \ _Static_assert(sizeof(__val) == sizeof(__Bits)); \ _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ __Bits __tmp; \ memcpy(&__tmp, &__val, sizeof(__val)); \ __tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \ __tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \ long long __ret; \ memcpy(&__ret, &__tmp, sizeof(__tmp)); \ return __ret; \ } \ inline __device__ unsigned long long __FnName( \ unsigned int __mask, unsigned long long __val, __Type __offset, \ int __width = warpSize) { \ return static_cast<unsigned long long>( \ ::__FnName(__mask, static_cast<long long>(__val), __offset, __width)); \ } \ inline __device__ long __FnName(unsigned int __mask, long __val, \ __Type __offset, int __width = warpSize) { \ _Static_assert(sizeof(long) == sizeof(long long) || \ sizeof(long) == sizeof(int)); \ if (sizeof(long) == sizeof(long long)) { \ return static_cast<long>(::__FnName( \ __mask, static_cast<long long>(__val), __offset, __width)); \ } else if (sizeof(long) == sizeof(int)) { \ return static_cast<long>( \ ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \ } \ } \ inline __device__ unsigned long __FnName( \ unsigned int __mask, unsigned long __val, __Type __offset, \ int __width = warpSize) { \ return static_cast<unsigned long>( \ ::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \ } \ inline __device__ double __FnName(unsigned int __mask, double __val, \ __Type __offset, int __width = warpSize) { \ long long __tmp; \ _Static_assert(sizeof(__tmp) == sizeof(__val)); \ memcpy(&__tmp, &__val, sizeof(__val)); \ __tmp = ::__FnName(__mask, __tmp, __offset, __width); \ double __ret; \ memcpy(&__ret, &__tmp, sizeof(__ret)); \ return __ret; \ } __MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32, __nvvm_shfl_sync_idx_f32, 0x1f, int); // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= // maxLane. __MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32, __nvvm_shfl_sync_up_f32, 0, unsigned int); __MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32, __nvvm_shfl_sync_down_f32, 0x1f, unsigned int); __MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32, __nvvm_shfl_sync_bfly_f32, 0x1f, int); #pragma pop_macro("__MAKE_SYNC_SHUFFLES") inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) { return __nvvm_bar_warp_sync(mask); } inline __device__ void __barrier_sync(unsigned int id) { __nvvm_barrier_sync(id); } inline __device__ void __barrier_sync_count(unsigned int id, unsigned int count) { __nvvm_barrier_sync_cnt(id, count); } inline __device__ int __all_sync(unsigned int mask, int pred) { return __nvvm_vote_all_sync(mask, pred); } inline __device__ int __any_sync(unsigned int mask, int pred) { return __nvvm_vote_any_sync(mask, pred); } inline __device__ int __uni_sync(unsigned int mask, int pred) { return __nvvm_vote_uni_sync(mask, pred); } inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) { return __nvvm_vote_ballot_sync(mask, pred); } inline __device__ unsigned int __activemask() { #if CUDA_VERSION < 9020 return __nvvm_vote_ballot(1); #else unsigned int mask; asm volatile("activemask.b32 %0;" : "=r"(mask)); return mask; #endif } inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) { return __nvvm_fns(mask, base, offset); } #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 // Define __match* builtins CUDA-9 headers expect to see. #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700 inline __device__ unsigned int __match32_any_sync(unsigned int mask, unsigned int value) { return __nvvm_match_any_sync_i32(mask, value); } inline __device__ unsigned int __match64_any_sync(unsigned int mask, unsigned long long value) { return __nvvm_match_any_sync_i64(mask, value); } inline __device__ unsigned int __match32_all_sync(unsigned int mask, unsigned int value, int *pred) { return __nvvm_match_all_sync_i32p(mask, value, pred); } inline __device__ unsigned int __match64_all_sync(unsigned int mask, unsigned long long value, int *pred) { return __nvvm_match_all_sync_i64p(mask, value, pred); } #include "crt/sm_70_rt.hpp" #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700 #endif // __CUDA_VERSION >= 9000 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}. // Prevent the vanilla sm_32 intrinsics header from being included. #define __SM_32_INTRINSICS_H__ #define __SM_32_INTRINSICS_HPP__ #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); } inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); } inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); } inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); } inline __device__ long long __ldg(const long long *ptr) { return __nvvm_ldg_ll(ptr); } inline __device__ unsigned char __ldg(const unsigned char *ptr) { return __nvvm_ldg_uc(ptr); } inline __device__ signed char __ldg(const signed char *ptr) { return __nvvm_ldg_uc((const unsigned char *)ptr); } inline __device__ unsigned short __ldg(const unsigned short *ptr) { return __nvvm_ldg_us(ptr); } inline __device__ unsigned int __ldg(const unsigned int *ptr) { return __nvvm_ldg_ui(ptr); } inline __device__ unsigned long __ldg(const unsigned long *ptr) { return __nvvm_ldg_ul(ptr); } inline __device__ unsigned long long __ldg(const unsigned long long *ptr) { return __nvvm_ldg_ull(ptr); } inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); } inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); } inline __device__ char2 __ldg(const char2 *ptr) { typedef char c2 __attribute__((ext_vector_type(2))); // We can assume that ptr is aligned at least to char2's alignment, but the // load will assume that ptr is aligned to char2's alignment. This is only // safe if alignof(c2) <= alignof(char2). c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr)); char2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ char4 __ldg(const char4 *ptr) { typedef char c4 __attribute__((ext_vector_type(4))); c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr)); char4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ short2 __ldg(const short2 *ptr) { typedef short s2 __attribute__((ext_vector_type(2))); s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr)); short2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ short4 __ldg(const short4 *ptr) { typedef short s4 __attribute__((ext_vector_type(4))); s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr)); short4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ int2 __ldg(const int2 *ptr) { typedef int i2 __attribute__((ext_vector_type(2))); i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr)); int2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ int4 __ldg(const int4 *ptr) { typedef int i4 __attribute__((ext_vector_type(4))); i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr)); int4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ longlong2 __ldg(const longlong2 *ptr) { typedef long long ll2 __attribute__((ext_vector_type(2))); ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr)); longlong2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ uchar2 __ldg(const uchar2 *ptr) { typedef unsigned char uc2 __attribute__((ext_vector_type(2))); uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr)); uchar2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ uchar4 __ldg(const uchar4 *ptr) { typedef unsigned char uc4 __attribute__((ext_vector_type(4))); uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr)); uchar4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ ushort2 __ldg(const ushort2 *ptr) { typedef unsigned short us2 __attribute__((ext_vector_type(2))); us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr)); ushort2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ ushort4 __ldg(const ushort4 *ptr) { typedef unsigned short us4 __attribute__((ext_vector_type(4))); us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr)); ushort4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ uint2 __ldg(const uint2 *ptr) { typedef unsigned int ui2 __attribute__((ext_vector_type(2))); ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr)); uint2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ uint4 __ldg(const uint4 *ptr) { typedef unsigned int ui4 __attribute__((ext_vector_type(4))); ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr)); uint4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) { typedef unsigned long long ull2 __attribute__((ext_vector_type(2))); ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr)); ulonglong2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ float2 __ldg(const float2 *ptr) { typedef float f2 __attribute__((ext_vector_type(2))); f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr)); float2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } inline __device__ float4 __ldg(const float4 *ptr) { typedef float f4 __attribute__((ext_vector_type(4))); f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr)); float4 ret; ret.x = rv[0]; ret.y = rv[1]; ret.z = rv[2]; ret.w = rv[3]; return ret; } inline __device__ double2 __ldg(const double2 *ptr) { typedef double d2 __attribute__((ext_vector_type(2))); d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr)); double2 ret; ret.x = rv[0]; ret.y = rv[1]; return ret; } // TODO: Implement these as intrinsics, so the backend can work its magic on // these. Alternatively, we could implement these as plain C and try to get // llvm to recognize the relevant patterns. inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned result; asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result) : "r"(low32), "r"(high32), "r"(shiftWidth)); return result; } inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned result; asm("shf.l.clamp.b32 %0, %1, %2, %3;" : "=r"(result) : "r"(low32), "r"(high32), "r"(shiftWidth)); return result; } inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned result; asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result) : "r"(low32), "r"(high32), "r"(shiftWidth)); return result; } inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32, unsigned shiftWidth) { unsigned ret; asm("shf.r.clamp.b32 %0, %1, %2, %3;" : "=r"(ret) : "r"(low32), "r"(high32), "r"(shiftWidth)); return ret; } #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 #if CUDA_VERSION >= 11000 extern "C" { __device__ inline size_t __nv_cvta_generic_to_global_impl(const void *__ptr) { return (size_t)(void __attribute__((address_space(1))) *)__ptr; } __device__ inline size_t __nv_cvta_generic_to_shared_impl(const void *__ptr) { return (size_t)(void __attribute__((address_space(3))) *)__ptr; } __device__ inline size_t __nv_cvta_generic_to_constant_impl(const void *__ptr) { return (size_t)(void __attribute__((address_space(4))) *)__ptr; } __device__ inline size_t __nv_cvta_generic_to_local_impl(const void *__ptr) { return (size_t)(void __attribute__((address_space(5))) *)__ptr; } __device__ inline void *__nv_cvta_global_to_generic_impl(size_t __ptr) { return (void *)(void __attribute__((address_space(1))) *)__ptr; } __device__ inline void *__nv_cvta_shared_to_generic_impl(size_t __ptr) { return (void *)(void __attribute__((address_space(3))) *)__ptr; } __device__ inline void *__nv_cvta_constant_to_generic_impl(size_t __ptr) { return (void *)(void __attribute__((address_space(4))) *)__ptr; } __device__ inline void *__nv_cvta_local_to_generic_impl(size_t __ptr) { return (void *)(void __attribute__((address_space(5))) *)__ptr; } __device__ inline cuuint32_t __nvvm_get_smem_pointer(void *__ptr) { return __nv_cvta_generic_to_shared_impl(__ptr); } } // extern "C" #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800 __device__ inline unsigned __reduce_add_sync(unsigned __mask, unsigned __value) { return __nvvm_redux_sync_add(__mask, __value); } __device__ inline unsigned __reduce_min_sync(unsigned __mask, unsigned __value) { return __nvvm_redux_sync_umin(__mask, __value); } __device__ inline unsigned __reduce_max_sync(unsigned __mask, unsigned __value) { return __nvvm_redux_sync_umax(__mask, __value); } __device__ inline int __reduce_min_sync(unsigned __mask, int __value) { return __nvvm_redux_sync_min(__mask, __value); } __device__ inline int __reduce_max_sync(unsigned __mask, int __value) { return __nvvm_redux_sync_max(__mask, __value); } __device__ inline unsigned __reduce_or_sync(unsigned __mask, unsigned __value) { return __nvvm_redux_sync_or(__mask, __value); } __device__ inline unsigned __reduce_and_sync(unsigned __mask, unsigned __value) { return __nvvm_redux_sync_and(__mask, __value); } __device__ inline unsigned __reduce_xor_sync(unsigned __mask, unsigned __value) { return __nvvm_redux_sync_xor(__mask, __value); } __device__ inline void __nv_memcpy_async_shared_global_4(void *__dst, const void *__src, unsigned __src_size) { __nvvm_cp_async_ca_shared_global_4( (void __attribute__((address_space(3))) *)__dst, (const void __attribute__((address_space(1))) *)__src, __src_size); } __device__ inline void __nv_memcpy_async_shared_global_8(void *__dst, const void *__src, unsigned __src_size) { __nvvm_cp_async_ca_shared_global_8( (void __attribute__((address_space(3))) *)__dst, (const void __attribute__((address_space(1))) *)__src, __src_size); } __device__ inline void __nv_memcpy_async_shared_global_16(void *__dst, const void *__src, unsigned __src_size) { __nvvm_cp_async_ca_shared_global_16( (void __attribute__((address_space(3))) *)__dst, (const void __attribute__((address_space(1))) *)__src, __src_size); } __device__ inline void * __nv_associate_access_property(const void *__ptr, unsigned long long __prop) { // TODO: it appears to provide compiler with some sort of a hint. We do not // know what exactly it is supposed to do. However, CUDA headers suggest that // just passing through __ptr should not affect correctness. They do so on // pre-sm80 GPUs where this builtin is not available. return (void*)__ptr; } #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900 __device__ inline unsigned __isCtaShared(const void *ptr) { return __isShared(ptr); } __device__ inline unsigned __isClusterShared(const void *__ptr) { return __nvvm_isspacep_shared_cluster(__ptr); } __device__ inline void *__cluster_map_shared_rank(const void *__ptr, unsigned __rank) { return __nvvm_mapa((void *)__ptr, __rank); } __device__ inline unsigned __cluster_query_shared_rank(const void *__ptr) { return __nvvm_getctarank((void *)__ptr); } __device__ inline uint2 __cluster_map_shared_multicast(const void *__ptr, unsigned int __cluster_cta_mask) { return make_uint2((unsigned)__cvta_generic_to_shared(__ptr), __cluster_cta_mask); } __device__ inline unsigned __clusterDimIsSpecified() { return __nvvm_is_explicit_cluster(); } __device__ inline dim3 __clusterDim() { return dim3(__nvvm_read_ptx_sreg_cluster_nctaid_x(), __nvvm_read_ptx_sreg_cluster_nctaid_y(), __nvvm_read_ptx_sreg_cluster_nctaid_z()); } __device__ inline dim3 __clusterRelativeBlockIdx() { return dim3(__nvvm_read_ptx_sreg_cluster_ctaid_x(), __nvvm_read_ptx_sreg_cluster_ctaid_y(), __nvvm_read_ptx_sreg_cluster_ctaid_z()); } __device__ inline dim3 __clusterGridDimInClusters() { return dim3(__nvvm_read_ptx_sreg_nclusterid_x(), __nvvm_read_ptx_sreg_nclusterid_y(), __nvvm_read_ptx_sreg_nclusterid_z()); } __device__ inline dim3 __clusterIdx() { return dim3(__nvvm_read_ptx_sreg_clusterid_x(), __nvvm_read_ptx_sreg_clusterid_y(), __nvvm_read_ptx_sreg_clusterid_z()); } __device__ inline unsigned __clusterRelativeBlockRank() { return __nvvm_read_ptx_sreg_cluster_ctarank(); } __device__ inline unsigned __clusterSizeInBlocks() { return __nvvm_read_ptx_sreg_cluster_nctarank(); } __device__ inline void __cluster_barrier_arrive() { __nvvm_barrier_cluster_arrive(); } __device__ inline void __cluster_barrier_arrive_relaxed() { __nvvm_barrier_cluster_arrive_relaxed(); } __device__ inline void __cluster_barrier_wait() { __nvvm_barrier_cluster_wait(); } __device__ inline void __threadfence_cluster() { __nvvm_fence_sc_cluster(); } __device__ inline float2 atomicAdd(float2 *__ptr, float2 __val) { float2 __ret; __asm__("atom.add.v2.f32 {%0, %1}, [%2], {%3, %4};" : "=f"(__ret.x), "=f"(__ret.y) : "l"(__ptr), "f"(__val.x), "f"(__val.y)); return __ret; } __device__ inline float2 atomicAdd_block(float2 *__ptr, float2 __val) { float2 __ret; __asm__("atom.cta.add.v2.f32 {%0, %1}, [%2], {%3, %4};" : "=f"(__ret.x), "=f"(__ret.y) : "l"(__ptr), "f"(__val.x), "f"(__val.y)); return __ret; } __device__ inline float2 atomicAdd_system(float2 *__ptr, float2 __val) { float2 __ret; __asm__("atom.sys.add.v2.f32 {%0, %1}, [%2], {%3, %4};" : "=f"(__ret.x), "=f"(__ret.y) : "l"(__ptr), "f"(__val.x), "f"(__val.y)); return __ret; } __device__ inline float4 atomicAdd(float4 *__ptr, float4 __val) { float4 __ret; __asm__("atom.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};" : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w) : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)); return __ret; } __device__ inline float4 atomicAdd_block(float4 *__ptr, float4 __val) { float4 __ret; __asm__( "atom.cta.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};" : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w) : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)); return __ret; } __device__ inline float4 atomicAdd_system(float4 *__ptr, float4 __val) { float4 __ret; __asm__( "atom.sys.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};" : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w) : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w) :); return __ret; } #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900 #endif // CUDA_VERSION >= 11000 #endif // defined(__CLANG_CUDA_INTRINSICS_H__)