Server IP : 184.154.167.98 / Your IP : 3.12.166.111 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 8.2.26 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /lib/clang/18/include/ |
Upload File : |
/*===-- __clang_cuda_complex_builtins - CUDA impls of runtime complex fns ---=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __CLANG_CUDA_COMPLEX_BUILTINS #define __CLANG_CUDA_COMPLEX_BUILTINS // This header defines __muldc3, __mulsc3, __divdc3, and __divsc3. These are // libgcc functions that clang assumes are available when compiling c99 complex // operations. (These implementations come from libc++, and have been modified // to work with CUDA and OpenMP target offloading [in C and C++ mode].) #pragma push_macro("__DEVICE__") #if defined(__OPENMP_NVPTX__) || defined(__OPENMP_AMDGCN__) #pragma omp declare target #define __DEVICE__ __attribute__((noinline, nothrow, cold, weak)) #else #define __DEVICE__ __device__ inline #endif // To make the algorithms available for C and C++ in CUDA and OpenMP we select // different but equivalent function versions. TODO: For OpenMP we currently // select the native builtins as the overload support for templates is lacking. #if !defined(__OPENMP_NVPTX__) && !defined(__OPENMP_AMDGCN__) #define _ISNANd std::isnan #define _ISNANf std::isnan #define _ISINFd std::isinf #define _ISINFf std::isinf #define _ISFINITEd std::isfinite #define _ISFINITEf std::isfinite #define _COPYSIGNd std::copysign #define _COPYSIGNf std::copysign #define _SCALBNd std::scalbn #define _SCALBNf std::scalbn #define _ABSd std::abs #define _ABSf std::abs #define _LOGBd std::logb #define _LOGBf std::logb // Rather than pulling in std::max from algorithm everytime, use available ::max. #define _fmaxd max #define _fmaxf max #else #ifdef __AMDGCN__ #define _ISNANd __ocml_isnan_f64 #define _ISNANf __ocml_isnan_f32 #define _ISINFd __ocml_isinf_f64 #define _ISINFf __ocml_isinf_f32 #define _ISFINITEd __ocml_isfinite_f64 #define _ISFINITEf __ocml_isfinite_f32 #define _COPYSIGNd __ocml_copysign_f64 #define _COPYSIGNf __ocml_copysign_f32 #define _SCALBNd __ocml_scalbn_f64 #define _SCALBNf __ocml_scalbn_f32 #define _ABSd __ocml_fabs_f64 #define _ABSf __ocml_fabs_f32 #define _LOGBd __ocml_logb_f64 #define _LOGBf __ocml_logb_f32 #define _fmaxd __ocml_fmax_f64 #define _fmaxf __ocml_fmax_f32 #else #define _ISNANd __nv_isnand #define _ISNANf __nv_isnanf #define _ISINFd __nv_isinfd #define _ISINFf __nv_isinff #define _ISFINITEd __nv_isfinited #define _ISFINITEf __nv_finitef #define _COPYSIGNd __nv_copysign #define _COPYSIGNf __nv_copysignf #define _SCALBNd __nv_scalbn #define _SCALBNf __nv_scalbnf #define _ABSd __nv_fabs #define _ABSf __nv_fabsf #define _LOGBd __nv_logb #define _LOGBf __nv_logbf #define _fmaxd __nv_fmax #define _fmaxf __nv_fmaxf #endif #endif #if defined(__cplusplus) extern "C" { #endif __DEVICE__ double _Complex __muldc3(double __a, double __b, double __c, double __d) { double __ac = __a * __c; double __bd = __b * __d; double __ad = __a * __d; double __bc = __b * __c; double _Complex z; __real__(z) = __ac - __bd; __imag__(z) = __ad + __bc; if (_ISNANd(__real__(z)) && _ISNANd(__imag__(z))) { int __recalc = 0; if (_ISINFd(__a) || _ISINFd(__b)) { __a = _COPYSIGNd(_ISINFd(__a) ? 1 : 0, __a); __b = _COPYSIGNd(_ISINFd(__b) ? 1 : 0, __b); if (_ISNANd(__c)) __c = _COPYSIGNd(0, __c); if (_ISNANd(__d)) __d = _COPYSIGNd(0, __d); __recalc = 1; } if (_ISINFd(__c) || _ISINFd(__d)) { __c = _COPYSIGNd(_ISINFd(__c) ? 1 : 0, __c); __d = _COPYSIGNd(_ISINFd(__d) ? 1 : 0, __d); if (_ISNANd(__a)) __a = _COPYSIGNd(0, __a); if (_ISNANd(__b)) __b = _COPYSIGNd(0, __b); __recalc = 1; } if (!__recalc && (_ISINFd(__ac) || _ISINFd(__bd) || _ISINFd(__ad) || _ISINFd(__bc))) { if (_ISNANd(__a)) __a = _COPYSIGNd(0, __a); if (_ISNANd(__b)) __b = _COPYSIGNd(0, __b); if (_ISNANd(__c)) __c = _COPYSIGNd(0, __c); if (_ISNANd(__d)) __d = _COPYSIGNd(0, __d); __recalc = 1; } if (__recalc) { // Can't use std::numeric_limits<double>::infinity() -- that doesn't have // a device overload (and isn't constexpr before C++11, naturally). __real__(z) = __builtin_huge_val() * (__a * __c - __b * __d); __imag__(z) = __builtin_huge_val() * (__a * __d + __b * __c); } } return z; } __DEVICE__ float _Complex __mulsc3(float __a, float __b, float __c, float __d) { float __ac = __a * __c; float __bd = __b * __d; float __ad = __a * __d; float __bc = __b * __c; float _Complex z; __real__(z) = __ac - __bd; __imag__(z) = __ad + __bc; if (_ISNANf(__real__(z)) && _ISNANf(__imag__(z))) { int __recalc = 0; if (_ISINFf(__a) || _ISINFf(__b)) { __a = _COPYSIGNf(_ISINFf(__a) ? 1 : 0, __a); __b = _COPYSIGNf(_ISINFf(__b) ? 1 : 0, __b); if (_ISNANf(__c)) __c = _COPYSIGNf(0, __c); if (_ISNANf(__d)) __d = _COPYSIGNf(0, __d); __recalc = 1; } if (_ISINFf(__c) || _ISINFf(__d)) { __c = _COPYSIGNf(_ISINFf(__c) ? 1 : 0, __c); __d = _COPYSIGNf(_ISINFf(__d) ? 1 : 0, __d); if (_ISNANf(__a)) __a = _COPYSIGNf(0, __a); if (_ISNANf(__b)) __b = _COPYSIGNf(0, __b); __recalc = 1; } if (!__recalc && (_ISINFf(__ac) || _ISINFf(__bd) || _ISINFf(__ad) || _ISINFf(__bc))) { if (_ISNANf(__a)) __a = _COPYSIGNf(0, __a); if (_ISNANf(__b)) __b = _COPYSIGNf(0, __b); if (_ISNANf(__c)) __c = _COPYSIGNf(0, __c); if (_ISNANf(__d)) __d = _COPYSIGNf(0, __d); __recalc = 1; } if (__recalc) { __real__(z) = __builtin_huge_valf() * (__a * __c - __b * __d); __imag__(z) = __builtin_huge_valf() * (__a * __d + __b * __c); } } return z; } __DEVICE__ double _Complex __divdc3(double __a, double __b, double __c, double __d) { int __ilogbw = 0; // Can't use std::max, because that's defined in <algorithm>, and we don't // want to pull that in for every compile. The CUDA headers define // ::max(float, float) and ::max(double, double), which is sufficient for us. double __logbw = _LOGBd(_fmaxd(_ABSd(__c), _ABSd(__d))); if (_ISFINITEd(__logbw)) { __ilogbw = (int)__logbw; __c = _SCALBNd(__c, -__ilogbw); __d = _SCALBNd(__d, -__ilogbw); } double __denom = __c * __c + __d * __d; double _Complex z; __real__(z) = _SCALBNd((__a * __c + __b * __d) / __denom, -__ilogbw); __imag__(z) = _SCALBNd((__b * __c - __a * __d) / __denom, -__ilogbw); if (_ISNANd(__real__(z)) && _ISNANd(__imag__(z))) { if ((__denom == 0.0) && (!_ISNANd(__a) || !_ISNANd(__b))) { __real__(z) = _COPYSIGNd(__builtin_huge_val(), __c) * __a; __imag__(z) = _COPYSIGNd(__builtin_huge_val(), __c) * __b; } else if ((_ISINFd(__a) || _ISINFd(__b)) && _ISFINITEd(__c) && _ISFINITEd(__d)) { __a = _COPYSIGNd(_ISINFd(__a) ? 1.0 : 0.0, __a); __b = _COPYSIGNd(_ISINFd(__b) ? 1.0 : 0.0, __b); __real__(z) = __builtin_huge_val() * (__a * __c + __b * __d); __imag__(z) = __builtin_huge_val() * (__b * __c - __a * __d); } else if (_ISINFd(__logbw) && __logbw > 0.0 && _ISFINITEd(__a) && _ISFINITEd(__b)) { __c = _COPYSIGNd(_ISINFd(__c) ? 1.0 : 0.0, __c); __d = _COPYSIGNd(_ISINFd(__d) ? 1.0 : 0.0, __d); __real__(z) = 0.0 * (__a * __c + __b * __d); __imag__(z) = 0.0 * (__b * __c - __a * __d); } } return z; } __DEVICE__ float _Complex __divsc3(float __a, float __b, float __c, float __d) { int __ilogbw = 0; float __logbw = _LOGBf(_fmaxf(_ABSf(__c), _ABSf(__d))); if (_ISFINITEf(__logbw)) { __ilogbw = (int)__logbw; __c = _SCALBNf(__c, -__ilogbw); __d = _SCALBNf(__d, -__ilogbw); } float __denom = __c * __c + __d * __d; float _Complex z; __real__(z) = _SCALBNf((__a * __c + __b * __d) / __denom, -__ilogbw); __imag__(z) = _SCALBNf((__b * __c - __a * __d) / __denom, -__ilogbw); if (_ISNANf(__real__(z)) && _ISNANf(__imag__(z))) { if ((__denom == 0) && (!_ISNANf(__a) || !_ISNANf(__b))) { __real__(z) = _COPYSIGNf(__builtin_huge_valf(), __c) * __a; __imag__(z) = _COPYSIGNf(__builtin_huge_valf(), __c) * __b; } else if ((_ISINFf(__a) || _ISINFf(__b)) && _ISFINITEf(__c) && _ISFINITEf(__d)) { __a = _COPYSIGNf(_ISINFf(__a) ? 1 : 0, __a); __b = _COPYSIGNf(_ISINFf(__b) ? 1 : 0, __b); __real__(z) = __builtin_huge_valf() * (__a * __c + __b * __d); __imag__(z) = __builtin_huge_valf() * (__b * __c - __a * __d); } else if (_ISINFf(__logbw) && __logbw > 0 && _ISFINITEf(__a) && _ISFINITEf(__b)) { __c = _COPYSIGNf(_ISINFf(__c) ? 1 : 0, __c); __d = _COPYSIGNf(_ISINFf(__d) ? 1 : 0, __d); __real__(z) = 0 * (__a * __c + __b * __d); __imag__(z) = 0 * (__b * __c - __a * __d); } } return z; } #if defined(__cplusplus) } // extern "C" #endif #undef _ISNANd #undef _ISNANf #undef _ISINFd #undef _ISINFf #undef _COPYSIGNd #undef _COPYSIGNf #undef _ISFINITEd #undef _ISFINITEf #undef _SCALBNd #undef _SCALBNf #undef _ABSd #undef _ABSf #undef _LOGBd #undef _LOGBf #undef _fmaxd #undef _fmaxf #if defined(__OPENMP_NVPTX__) || defined(__OPENMP_AMDGCN__) #pragma omp end declare target #endif #pragma pop_macro("__DEVICE__") #endif // __CLANG_CUDA_COMPLEX_BUILTINS