Server IP : 184.154.167.98 / Your IP : 18.221.188.241 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 8.2.26 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /lib/clang/18/include/ |
Upload File : |
/*===---- __clang_cuda_runtime_wrapper.h - CUDA runtime support -------------=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ /* * WARNING: This header is intended to be directly -include'd by * the compiler and is not supposed to be included by users. * * CUDA headers are implemented in a way that currently makes it * impossible for user code to #include directly when compiling with * Clang. They present different view of CUDA-supplied functions * depending on where in NVCC's compilation pipeline the headers are * included. Neither of these modes provides function definitions with * correct attributes, so we use preprocessor to force the headers * into a form that Clang can use. * * Similarly to NVCC which -include's cuda_runtime.h, Clang -include's * this file during every CUDA compilation. */ #ifndef __CLANG_CUDA_RUNTIME_WRAPPER_H__ #define __CLANG_CUDA_RUNTIME_WRAPPER_H__ #if defined(__CUDA__) && defined(__clang__) // Include some forward declares that must come before cmath. #include <__clang_cuda_math_forward_declares.h> // Define __CUDACC__ early as libstdc++ standard headers with GNU extensions // enabled depend on it to avoid using __float128, which is unsupported in // CUDA. #define __CUDACC__ // Include some standard headers to avoid CUDA headers including them // while some required macros (like __THROW) are in a weird state. #include <cmath> #include <cstdlib> #include <stdlib.h> #include <string.h> #undef __CUDACC__ // Preserve common macros that will be changed below by us or by CUDA // headers. #pragma push_macro("__THROW") #pragma push_macro("__CUDA_ARCH__") // WARNING: Preprocessor hacks below are based on specific details of // CUDA-7.x headers and are not expected to work with any other // version of CUDA headers. #include "cuda.h" #if !defined(CUDA_VERSION) #error "cuda.h did not define CUDA_VERSION" #elif CUDA_VERSION < 7000 #error "Unsupported CUDA version!" #endif #pragma push_macro("__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__") #if CUDA_VERSION >= 10000 #define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__ #endif // Make largest subset of device functions available during host // compilation. #ifndef __CUDA_ARCH__ #define __CUDA_ARCH__ 9999 #endif #include "__clang_cuda_builtin_vars.h" // No need for device_launch_parameters.h as __clang_cuda_builtin_vars.h above // has taken care of builtin variables declared in the file. #define __DEVICE_LAUNCH_PARAMETERS_H__ // {math,device}_functions.h only have declarations of the // functions. We don't need them as we're going to pull in their // definitions from .hpp files. #define __DEVICE_FUNCTIONS_H__ #define __MATH_FUNCTIONS_H__ #define __COMMON_FUNCTIONS_H__ // device_functions_decls is replaced by __clang_cuda_device_functions.h // included below. #define __DEVICE_FUNCTIONS_DECLS_H__ #undef __CUDACC__ #if CUDA_VERSION < 9000 #define __CUDABE__ #else #define __CUDACC__ #define __CUDA_LIBDEVICE__ #endif // Disables definitions of device-side runtime support stubs in // cuda_device_runtime_api.h #include "host_defines.h" #undef __CUDACC__ #include "driver_types.h" #include "host_config.h" // Temporarily replace "nv_weak" with weak, so __attribute__((nv_weak)) in // cuda_device_runtime_api.h ends up being __attribute__((weak)) which is the // functional equivalent of what we need. #pragma push_macro("nv_weak") #define nv_weak weak #undef __CUDABE__ #undef __CUDA_LIBDEVICE__ #define __CUDACC__ #include "cuda_runtime.h" #pragma pop_macro("nv_weak") #undef __CUDACC__ #define __CUDABE__ // CUDA headers use __nvvm_memcpy and __nvvm_memset which Clang does // not have at the moment. Emulate them with a builtin memcpy/memset. #define __nvvm_memcpy(s, d, n, a) __builtin_memcpy(s, d, n) #define __nvvm_memset(d, c, n, a) __builtin_memset(d, c, n) #if CUDA_VERSION < 9000 #include "crt/device_runtime.h" #endif #include "crt/host_runtime.h" // device_runtime.h defines __cxa_* macros that will conflict with // cxxabi.h. // FIXME: redefine these as __device__ functions. #undef __cxa_vec_ctor #undef __cxa_vec_cctor #undef __cxa_vec_dtor #undef __cxa_vec_new #undef __cxa_vec_new2 #undef __cxa_vec_new3 #undef __cxa_vec_delete2 #undef __cxa_vec_delete #undef __cxa_vec_delete3 #undef __cxa_pure_virtual // math_functions.hpp expects this host function be defined on MacOS, but it // ends up not being there because of the games we play here. Just define it // ourselves; it's simple enough. #ifdef __APPLE__ inline __host__ double __signbitd(double x) { return std::signbit(x); } #endif // CUDA 9.1 no longer provides declarations for libdevice functions, so we need // to provide our own. #include <__clang_cuda_libdevice_declares.h> // Wrappers for many device-side standard library functions, incl. math // functions, became compiler builtins in CUDA-9 and have been removed from the // CUDA headers. Clang now provides its own implementation of the wrappers. #if CUDA_VERSION >= 9000 #include <__clang_cuda_device_functions.h> #include <__clang_cuda_math.h> #endif // __THROW is redefined to be empty by device_functions_decls.h in CUDA. Clang's // counterpart does not do it, so we need to make it empty here to keep // following CUDA includes happy. #undef __THROW #define __THROW // CUDA 8.0.41 relies on __USE_FAST_MATH__ and __CUDA_PREC_DIV's values. // Previous versions used to check whether they are defined or not. // CU_DEVICE_INVALID macro is only defined in 8.0.41, so we use it // here to detect the switch. #if defined(CU_DEVICE_INVALID) #if !defined(__USE_FAST_MATH__) #define __USE_FAST_MATH__ 0 #endif #if !defined(__CUDA_PREC_DIV) #define __CUDA_PREC_DIV 0 #endif #endif // Temporarily poison __host__ macro to ensure it's not used by any of // the headers we're about to include. #pragma push_macro("__host__") #define __host__ UNEXPECTED_HOST_ATTRIBUTE // device_functions.hpp and math_functions*.hpp use 'static // __forceinline__' (with no __device__) for definitions of device // functions. Temporarily redefine __forceinline__ to include // __device__. #pragma push_macro("__forceinline__") #define __forceinline__ __device__ __inline__ __attribute__((always_inline)) #if CUDA_VERSION < 9000 #include "device_functions.hpp" #endif // math_function.hpp uses the __USE_FAST_MATH__ macro to determine whether we // get the slow-but-accurate or fast-but-inaccurate versions of functions like // sin and exp. This is controlled in clang by -fgpu-approx-transcendentals. // // device_functions.hpp uses __USE_FAST_MATH__ for a different purpose (fast vs. // slow divides), so we need to scope our define carefully here. #pragma push_macro("__USE_FAST_MATH__") #if defined(__CLANG_GPU_APPROX_TRANSCENDENTALS__) #define __USE_FAST_MATH__ 1 #endif #if CUDA_VERSION >= 9000 #include "crt/math_functions.hpp" #else #include "math_functions.hpp" #endif #pragma pop_macro("__USE_FAST_MATH__") #if CUDA_VERSION < 9000 #include "math_functions_dbl_ptx3.hpp" #endif #pragma pop_macro("__forceinline__") // Pull in host-only functions that are only available when neither // __CUDACC__ nor __CUDABE__ are defined. #undef __MATH_FUNCTIONS_HPP__ #undef __CUDABE__ #if CUDA_VERSION < 9000 #include "math_functions.hpp" #endif // Alas, additional overloads for these functions are hard to get to. // Considering that we only need these overloads for a few functions, // we can provide them here. static inline float rsqrt(float __a) { return rsqrtf(__a); } static inline float rcbrt(float __a) { return rcbrtf(__a); } static inline float sinpi(float __a) { return sinpif(__a); } static inline float cospi(float __a) { return cospif(__a); } static inline void sincospi(float __a, float *__b, float *__c) { return sincospif(__a, __b, __c); } static inline float erfcinv(float __a) { return erfcinvf(__a); } static inline float normcdfinv(float __a) { return normcdfinvf(__a); } static inline float normcdf(float __a) { return normcdff(__a); } static inline float erfcx(float __a) { return erfcxf(__a); } #if CUDA_VERSION < 9000 // For some reason single-argument variant is not always declared by // CUDA headers. Alas, device_functions.hpp included below needs it. static inline __device__ void __brkpt(int __c) { __brkpt(); } #endif // Now include *.hpp with definitions of various GPU functions. Alas, // a lot of thins get declared/defined with __host__ attribute which // we don't want and we have to define it out. We also have to include // {device,math}_functions.hpp again in order to extract the other // branch of #if/else inside. #define __host__ #undef __CUDABE__ #define __CUDACC__ #if CUDA_VERSION >= 9000 // Some atomic functions became compiler builtins in CUDA-9 , so we need their // declarations. #include "device_atomic_functions.h" #endif #undef __DEVICE_FUNCTIONS_HPP__ #include "device_atomic_functions.hpp" #if CUDA_VERSION >= 9000 #include "crt/device_functions.hpp" #include "crt/device_double_functions.hpp" #else #include "device_functions.hpp" #define __CUDABE__ #include "device_double_functions.h" #undef __CUDABE__ #endif #include "sm_20_atomic_functions.hpp" // Predicate functions used in `__builtin_assume` need to have no side effect. // However, sm_20_intrinsics.hpp doesn't define them with neither pure nor // const attribute. Rename definitions from sm_20_intrinsics.hpp and re-define // them as pure ones. #pragma push_macro("__isGlobal") #pragma push_macro("__isShared") #pragma push_macro("__isConstant") #pragma push_macro("__isLocal") #define __isGlobal __ignored_cuda___isGlobal #define __isShared __ignored_cuda___isShared #define __isConstant __ignored_cuda___isConstant #define __isLocal __ignored_cuda___isLocal #include "sm_20_intrinsics.hpp" #pragma pop_macro("__isGlobal") #pragma pop_macro("__isShared") #pragma pop_macro("__isConstant") #pragma pop_macro("__isLocal") #pragma push_macro("__DEVICE__") #define __DEVICE__ static __device__ __forceinline__ __attribute__((const)) __DEVICE__ unsigned int __isGlobal(const void *p) { return __nvvm_isspacep_global(p); } __DEVICE__ unsigned int __isShared(const void *p) { return __nvvm_isspacep_shared(p); } __DEVICE__ unsigned int __isConstant(const void *p) { return __nvvm_isspacep_const(p); } __DEVICE__ unsigned int __isLocal(const void *p) { return __nvvm_isspacep_local(p); } #pragma pop_macro("__DEVICE__") #include "sm_32_atomic_functions.hpp" // Don't include sm_30_intrinsics.h and sm_32_intrinsics.h. These define the // __shfl and __ldg intrinsics using inline (volatile) asm, but we want to // define them using builtins so that the optimizer can reason about and across // these instructions. In particular, using intrinsics for ldg gets us the // [addr+imm] addressing mode, which, although it doesn't actually exist in the // hardware, seems to generate faster machine code because ptxas can more easily // reason about our code. #if CUDA_VERSION >= 8000 #pragma push_macro("__CUDA_ARCH__") #undef __CUDA_ARCH__ #include "sm_60_atomic_functions.hpp" #include "sm_61_intrinsics.hpp" #pragma pop_macro("__CUDA_ARCH__") #endif #undef __MATH_FUNCTIONS_HPP__ // math_functions.hpp defines ::signbit as a __host__ __device__ function. This // conflicts with libstdc++'s constexpr ::signbit, so we have to rename // math_function.hpp's ::signbit. It's guarded by #undef signbit, but that's // conditional on __GNUC__. :) #pragma push_macro("signbit") #pragma push_macro("__GNUC__") #undef __GNUC__ #define signbit __ignored_cuda_signbit // CUDA-9 omits device-side definitions of some math functions if it sees // include guard from math.h wrapper from libstdc++. We have to undo the header // guard temporarily to get the definitions we need. #pragma push_macro("_GLIBCXX_MATH_H") #pragma push_macro("_LIBCPP_VERSION") #if CUDA_VERSION >= 9000 #undef _GLIBCXX_MATH_H // We also need to undo another guard that checks for libc++ 3.8+ #ifdef _LIBCPP_VERSION #define _LIBCPP_VERSION 3700 #endif #endif #if CUDA_VERSION >= 9000 #include "crt/math_functions.hpp" #else #include "math_functions.hpp" #endif #pragma pop_macro("_GLIBCXX_MATH_H") #pragma pop_macro("_LIBCPP_VERSION") #pragma pop_macro("__GNUC__") #pragma pop_macro("signbit") #pragma pop_macro("__host__") // __clang_cuda_texture_intrinsics.h must be included first in order to provide // implementation for __nv_tex_surf_handler that CUDA's headers depend on. // The implementation requires c++11 and only works with CUDA-9 or newer. #if __cplusplus >= 201103L && CUDA_VERSION >= 9000 // clang-format off #include <__clang_cuda_texture_intrinsics.h> // clang-format on #else #if CUDA_VERSION >= 9000 // Provide a hint that texture support needs C++11. template <typename T> struct __nv_tex_needs_cxx11 { const static bool value = false; }; template <class T> __host__ __device__ void __nv_tex_surf_handler(const char *name, T *ptr, cudaTextureObject_t obj, float x) { _Static_assert(__nv_tex_needs_cxx11<T>::value, "Texture support requires C++11"); } #else // Textures in CUDA-8 and older are not supported by clang.There's no // convenient way to intercept texture use in these versions, so we can't // produce a meaningful error. The source code that attempts to use textures // will continue to fail as it does now. #endif // CUDA_VERSION #endif // __cplusplus >= 201103L && CUDA_VERSION >= 9000 #include "texture_fetch_functions.h" #include "texture_indirect_functions.h" // Restore state of __CUDA_ARCH__ and __THROW we had on entry. #pragma pop_macro("__CUDA_ARCH__") #pragma pop_macro("__THROW") // Set up compiler macros expected to be seen during compilation. #undef __CUDABE__ #define __CUDACC__ extern "C" { // Device-side CUDA system calls. // http://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html#system-calls // We need these declarations and wrappers for device-side // malloc/free/printf calls to work without relying on // -fcuda-disable-target-call-checks option. __device__ int vprintf(const char *, const char *); __device__ void free(void *) __attribute((nothrow)); __device__ void *malloc(size_t) __attribute((nothrow)) __attribute__((malloc)); // __assertfail() used to have a `noreturn` attribute. Unfortunately that // contributed to triggering the longstanding bug in ptxas when assert was used // in sufficiently convoluted code. See // https://bugs.llvm.org/show_bug.cgi?id=27738 for the details. __device__ void __assertfail(const char *__message, const char *__file, unsigned __line, const char *__function, size_t __charSize); // In order for standard assert() macro on linux to work we need to // provide device-side __assert_fail() __device__ static inline void __assert_fail(const char *__message, const char *__file, unsigned __line, const char *__function) { __assertfail(__message, __file, __line, __function, sizeof(char)); } // Clang will convert printf into vprintf, but we still need // device-side declaration for it. __device__ int printf(const char *, ...); } // extern "C" // We also need device-side std::malloc and std::free. namespace std { __device__ static inline void free(void *__ptr) { ::free(__ptr); } __device__ static inline void *malloc(size_t __size) { return ::malloc(__size); } } // namespace std // Out-of-line implementations from __clang_cuda_builtin_vars.h. These need to // come after we've pulled in the definition of uint3 and dim3. __device__ inline __cuda_builtin_threadIdx_t::operator dim3() const { return dim3(x, y, z); } __device__ inline __cuda_builtin_threadIdx_t::operator uint3() const { return {x, y, z}; } __device__ inline __cuda_builtin_blockIdx_t::operator dim3() const { return dim3(x, y, z); } __device__ inline __cuda_builtin_blockIdx_t::operator uint3() const { return {x, y, z}; } __device__ inline __cuda_builtin_blockDim_t::operator dim3() const { return dim3(x, y, z); } __device__ inline __cuda_builtin_blockDim_t::operator uint3() const { return {x, y, z}; } __device__ inline __cuda_builtin_gridDim_t::operator dim3() const { return dim3(x, y, z); } __device__ inline __cuda_builtin_gridDim_t::operator uint3() const { return {x, y, z}; } #include <__clang_cuda_cmath.h> #include <__clang_cuda_intrinsics.h> #include <__clang_cuda_complex_builtins.h> // curand_mtgp32_kernel helpfully redeclares blockDim and threadIdx in host // mode, giving them their "proper" types of dim3 and uint3. This is // incompatible with the types we give in __clang_cuda_builtin_vars.h. As as // hack, force-include the header (nvcc doesn't include it by default) but // redefine dim3 and uint3 to our builtin types. (Thankfully dim3 and uint3 are // only used here for the redeclarations of blockDim and threadIdx.) #pragma push_macro("dim3") #pragma push_macro("uint3") #define dim3 __cuda_builtin_blockDim_t #define uint3 __cuda_builtin_threadIdx_t #include "curand_mtgp32_kernel.h" #pragma pop_macro("dim3") #pragma pop_macro("uint3") #pragma pop_macro("__USE_FAST_MATH__") #pragma pop_macro("__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__") // CUDA runtime uses this undocumented function to access kernel launch // configuration. The declaration is in crt/device_functions.h but that file // includes a lot of other stuff we don't want. Instead, we'll provide our own // declaration for it here. #if CUDA_VERSION >= 9020 extern "C" unsigned __cudaPushCallConfiguration(dim3 gridDim, dim3 blockDim, size_t sharedMem = 0, void *stream = 0); #endif #endif // __CUDA__ #endif // __CLANG_CUDA_RUNTIME_WRAPPER_H__