Server IP : 184.154.167.98 / Your IP : 18.117.192.109 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /lib/clang/18/include/fuzzer/ |
Upload File : |
//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // A single header library providing an utility class to break up an array of // bytes. Whenever run on the same input, provides the same output, as long as // its methods are called in the same order, with the same arguments. //===----------------------------------------------------------------------===// #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_ #include <algorithm> #include <array> #include <climits> #include <cstddef> #include <cstdint> #include <cstring> #include <initializer_list> #include <limits> #include <string> #include <type_traits> #include <utility> #include <vector> // In addition to the comments below, the API is also briefly documented at // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider class FuzzedDataProvider { public: // |data| is an array of length |size| that the FuzzedDataProvider wraps to // provide more granular access. |data| must outlive the FuzzedDataProvider. FuzzedDataProvider(const uint8_t *data, size_t size) : data_ptr_(data), remaining_bytes_(size) {} ~FuzzedDataProvider() = default; // See the implementation below (after the class definition) for more verbose // comments for each of the methods. // Methods returning std::vector of bytes. These are the most popular choice // when splitting fuzzing input into pieces, as every piece is put into a // separate buffer (i.e. ASan would catch any under-/overflow) and the memory // will be released automatically. template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes); template <typename T> std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes, T terminator = 0); template <typename T> std::vector<T> ConsumeRemainingBytes(); // Methods returning strings. Use only when you need a std::string or a null // terminated C-string. Otherwise, prefer the methods returning std::vector. std::string ConsumeBytesAsString(size_t num_bytes); std::string ConsumeRandomLengthString(size_t max_length); std::string ConsumeRandomLengthString(); std::string ConsumeRemainingBytesAsString(); // Methods returning integer values. template <typename T> T ConsumeIntegral(); template <typename T> T ConsumeIntegralInRange(T min, T max); // Methods returning floating point values. template <typename T> T ConsumeFloatingPoint(); template <typename T> T ConsumeFloatingPointInRange(T min, T max); // 0 <= return value <= 1. template <typename T> T ConsumeProbability(); bool ConsumeBool(); // Returns a value chosen from the given enum. template <typename T> T ConsumeEnum(); // Returns a value from the given array. template <typename T, size_t size> T PickValueInArray(const T (&array)[size]); template <typename T, size_t size> T PickValueInArray(const std::array<T, size> &array); template <typename T> T PickValueInArray(std::initializer_list<const T> list); // Writes data to the given destination and returns number of bytes written. size_t ConsumeData(void *destination, size_t num_bytes); // Reports the remaining bytes available for fuzzed input. size_t remaining_bytes() { return remaining_bytes_; } private: FuzzedDataProvider(const FuzzedDataProvider &) = delete; FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete; void CopyAndAdvance(void *destination, size_t num_bytes); void Advance(size_t num_bytes); template <typename T> std::vector<T> ConsumeBytes(size_t size, size_t num_bytes); template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value); const uint8_t *data_ptr_; size_t remaining_bytes_; }; // Returns a std::vector containing |num_bytes| of input data. If fewer than // |num_bytes| of data remain, returns a shorter std::vector containing all // of the data that's left. Can be used with any byte sized type, such as // char, unsigned char, uint8_t, etc. template <typename T> std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t num_bytes) { num_bytes = std::min(num_bytes, remaining_bytes_); return ConsumeBytes<T>(num_bytes, num_bytes); } // Similar to |ConsumeBytes|, but also appends the terminator value at the end // of the resulting vector. Useful, when a mutable null-terminated C-string is // needed, for example. But that is a rare case. Better avoid it, if possible, // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods. template <typename T> std::vector<T> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes, T terminator) { num_bytes = std::min(num_bytes, remaining_bytes_); std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes); result.back() = terminator; return result; } // Returns a std::vector containing all remaining bytes of the input data. template <typename T> std::vector<T> FuzzedDataProvider::ConsumeRemainingBytes() { return ConsumeBytes<T>(remaining_bytes_); } // Returns a std::string containing |num_bytes| of input data. Using this and // |.c_str()| on the resulting string is the best way to get an immutable // null-terminated C string. If fewer than |num_bytes| of data remain, returns // a shorter std::string containing all of the data that's left. inline std::string FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes) { static_assert(sizeof(std::string::value_type) == sizeof(uint8_t), "ConsumeBytesAsString cannot convert the data to a string."); num_bytes = std::min(num_bytes, remaining_bytes_); std::string result( reinterpret_cast<const std::string::value_type *>(data_ptr_), num_bytes); Advance(num_bytes); return result; } // Returns a std::string of length from 0 to |max_length|. When it runs out of // input data, returns what remains of the input. Designed to be more stable // with respect to a fuzzer inserting characters than just picking a random // length and then consuming that many bytes with |ConsumeBytes|. inline std::string FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length) { // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\" // followed by anything else to the end of the string. As a result of this // logic, a fuzzer can insert characters into the string, and the string // will be lengthened to include those new characters, resulting in a more // stable fuzzer than picking the length of a string independently from // picking its contents. std::string result; // Reserve the anticipated capacity to prevent several reallocations. result.reserve(std::min(max_length, remaining_bytes_)); for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) { char next = ConvertUnsignedToSigned<char>(data_ptr_[0]); Advance(1); if (next == '\\' && remaining_bytes_ != 0) { next = ConvertUnsignedToSigned<char>(data_ptr_[0]); Advance(1); if (next != '\\') break; } result += next; } result.shrink_to_fit(); return result; } // Returns a std::string of length from 0 to |remaining_bytes_|. inline std::string FuzzedDataProvider::ConsumeRandomLengthString() { return ConsumeRandomLengthString(remaining_bytes_); } // Returns a std::string containing all remaining bytes of the input data. // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string // object. inline std::string FuzzedDataProvider::ConsumeRemainingBytesAsString() { return ConsumeBytesAsString(remaining_bytes_); } // Returns a number in the range [Type's min, Type's max]. The value might // not be uniformly distributed in the given range. If there's no input data // left, always returns |min|. template <typename T> T FuzzedDataProvider::ConsumeIntegral() { return ConsumeIntegralInRange(std::numeric_limits<T>::min(), std::numeric_limits<T>::max()); } // Returns a number in the range [min, max] by consuming bytes from the // input data. The value might not be uniformly distributed in the given // range. If there's no input data left, always returns |min|. |min| must // be less than or equal to |max|. template <typename T> T FuzzedDataProvider::ConsumeIntegralInRange(T min, T max) { static_assert(std::is_integral<T>::value, "An integral type is required."); static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type."); if (min > max) abort(); // Use the biggest type possible to hold the range and the result. uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min); uint64_t result = 0; size_t offset = 0; while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 && remaining_bytes_ != 0) { // Pull bytes off the end of the seed data. Experimentally, this seems to // allow the fuzzer to more easily explore the input space. This makes // sense, since it works by modifying inputs that caused new code to run, // and this data is often used to encode length of data read by // |ConsumeBytes|. Separating out read lengths makes it easier modify the // contents of the data that is actually read. --remaining_bytes_; result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_]; offset += CHAR_BIT; } // Avoid division by 0, in case |range + 1| results in overflow. if (range != std::numeric_limits<decltype(range)>::max()) result = result % (range + 1); return static_cast<T>(static_cast<uint64_t>(min) + result); } // Returns a floating point value in the range [Type's lowest, Type's max] by // consuming bytes from the input data. If there's no input data left, always // returns approximately 0. template <typename T> T FuzzedDataProvider::ConsumeFloatingPoint() { return ConsumeFloatingPointInRange<T>(std::numeric_limits<T>::lowest(), std::numeric_limits<T>::max()); } // Returns a floating point value in the given range by consuming bytes from // the input data. If there's no input data left, returns |min|. Note that // |min| must be less than or equal to |max|. template <typename T> T FuzzedDataProvider::ConsumeFloatingPointInRange(T min, T max) { if (min > max) abort(); T range = .0; T result = min; constexpr T zero(.0); if (max > zero && min < zero && max > min + std::numeric_limits<T>::max()) { // The diff |max - min| would overflow the given floating point type. Use // the half of the diff as the range and consume a bool to decide whether // the result is in the first of the second part of the diff. range = (max / 2.0) - (min / 2.0); if (ConsumeBool()) { result += range; } } else { range = max - min; } return result + range * ConsumeProbability<T>(); } // Returns a floating point number in the range [0.0, 1.0]. If there's no // input data left, always returns 0. template <typename T> T FuzzedDataProvider::ConsumeProbability() { static_assert(std::is_floating_point<T>::value, "A floating point type is required."); // Use different integral types for different floating point types in order // to provide better density of the resulting values. using IntegralType = typename std::conditional<(sizeof(T) <= sizeof(uint32_t)), uint32_t, uint64_t>::type; T result = static_cast<T>(ConsumeIntegral<IntegralType>()); result /= static_cast<T>(std::numeric_limits<IntegralType>::max()); return result; } // Reads one byte and returns a bool, or false when no data remains. inline bool FuzzedDataProvider::ConsumeBool() { return 1 & ConsumeIntegral<uint8_t>(); } // Returns an enum value. The enum must start at 0 and be contiguous. It must // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as: // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue }; template <typename T> T FuzzedDataProvider::ConsumeEnum() { static_assert(std::is_enum<T>::value, "|T| must be an enum type."); return static_cast<T>( ConsumeIntegralInRange<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue))); } // Returns a copy of the value selected from the given fixed-size |array|. template <typename T, size_t size> T FuzzedDataProvider::PickValueInArray(const T (&array)[size]) { static_assert(size > 0, "The array must be non empty."); return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; } template <typename T, size_t size> T FuzzedDataProvider::PickValueInArray(const std::array<T, size> &array) { static_assert(size > 0, "The array must be non empty."); return array[ConsumeIntegralInRange<size_t>(0, size - 1)]; } template <typename T> T FuzzedDataProvider::PickValueInArray(std::initializer_list<const T> list) { // TODO(Dor1s): switch to static_assert once C++14 is allowed. if (!list.size()) abort(); return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1)); } // Writes |num_bytes| of input data to the given destination pointer. If there // is not enough data left, writes all remaining bytes. Return value is the // number of bytes written. // In general, it's better to avoid using this function, but it may be useful // in cases when it's necessary to fill a certain buffer or object with // fuzzing data. inline size_t FuzzedDataProvider::ConsumeData(void *destination, size_t num_bytes) { num_bytes = std::min(num_bytes, remaining_bytes_); CopyAndAdvance(destination, num_bytes); return num_bytes; } // Private methods. inline void FuzzedDataProvider::CopyAndAdvance(void *destination, size_t num_bytes) { std::memcpy(destination, data_ptr_, num_bytes); Advance(num_bytes); } inline void FuzzedDataProvider::Advance(size_t num_bytes) { if (num_bytes > remaining_bytes_) abort(); data_ptr_ += num_bytes; remaining_bytes_ -= num_bytes; } template <typename T> std::vector<T> FuzzedDataProvider::ConsumeBytes(size_t size, size_t num_bytes) { static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type."); // The point of using the size-based constructor below is to increase the // odds of having a vector object with capacity being equal to the length. // That part is always implementation specific, but at least both libc++ and // libstdc++ allocate the requested number of bytes in that constructor, // which seems to be a natural choice for other implementations as well. // To increase the odds even more, we also call |shrink_to_fit| below. std::vector<T> result(size); if (size == 0) { if (num_bytes != 0) abort(); return result; } CopyAndAdvance(result.data(), num_bytes); // Even though |shrink_to_fit| is also implementation specific, we expect it // to provide an additional assurance in case vector's constructor allocated // a buffer which is larger than the actual amount of data we put inside it. result.shrink_to_fit(); return result; } template <typename TS, typename TU> TS FuzzedDataProvider::ConvertUnsignedToSigned(TU value) { static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types."); static_assert(!std::numeric_limits<TU>::is_signed, "Source type must be unsigned."); // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream. if (std::numeric_limits<TS>::is_modulo) return static_cast<TS>(value); // Avoid using implementation-defined unsigned to signed conversions. // To learn more, see https://stackoverflow.com/questions/13150449. if (value <= std::numeric_limits<TS>::max()) { return static_cast<TS>(value); } else { constexpr auto TS_min = std::numeric_limits<TS>::min(); return TS_min + static_cast<TS>(value - TS_min); } } #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_