Server IP : 184.154.167.98 / Your IP : 18.220.94.189 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 8.2.26 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/include/ |
Upload File : |
/* __ _____ _____ _____ __| | __| | | | JSON for Modern C++ | | |__ | | | | | | version 3.6.1 |_____|_____|_____|_|___| https://github.com/nlohmann/json Licensed under the MIT License <http://opensource.org/licenses/MIT>. SPDX-License-Identifier: MIT Copyright (c) 2013-2019 Niels Lohmann <http://nlohmann.me>. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef INCLUDE_NLOHMANN_JSON_HPP_ #define INCLUDE_NLOHMANN_JSON_HPP_ #define NLOHMANN_JSON_VERSION_MAJOR 3 #define NLOHMANN_JSON_VERSION_MINOR 6 #define NLOHMANN_JSON_VERSION_PATCH 1 #include <algorithm> // all_of, find, for_each #include <cassert> // assert #include <ciso646> // and, not, or #include <cstddef> // nullptr_t, ptrdiff_t, size_t #include <functional> // hash, less #include <initializer_list> // initializer_list #include <iosfwd> // istream, ostream #include <iterator> // random_access_iterator_tag #include <memory> // unique_ptr #include <numeric> // accumulate #include <string> // string, stoi, to_string #include <utility> // declval, forward, move, pair, swap #include <vector> // vector // #include <nlohmann/adl_serializer.hpp> #include <utility> // #include <nlohmann/detail/conversions/from_json.hpp> #include <algorithm> // transform #include <array> // array #include <ciso646> // and, not #include <forward_list> // forward_list #include <iterator> // inserter, front_inserter, end #include <map> // map #include <string> // string #include <tuple> // tuple, make_tuple #include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible #include <unordered_map> // unordered_map #include <utility> // pair, declval #include <valarray> // valarray // #include <nlohmann/detail/exceptions.hpp> #include <exception> // exception #include <stdexcept> // runtime_error #include <string> // to_string // #include <nlohmann/detail/input/position_t.hpp> #include <cstddef> // size_t namespace nlohmann { namespace detail { /// struct to capture the start position of the current token struct position_t { /// the total number of characters read std::size_t chars_read_total = 0; /// the number of characters read in the current line std::size_t chars_read_current_line = 0; /// the number of lines read std::size_t lines_read = 0; /// conversion to size_t to preserve SAX interface constexpr operator size_t() const { return chars_read_total; } }; } // namespace detail } // namespace nlohmann namespace nlohmann { namespace detail { //////////////// // exceptions // //////////////// /*! @brief general exception of the @ref basic_json class This class is an extension of `std::exception` objects with a member @a id for exception ids. It is used as the base class for all exceptions thrown by the @ref basic_json class. This class can hence be used as "wildcard" to catch exceptions. Subclasses: - @ref parse_error for exceptions indicating a parse error - @ref invalid_iterator for exceptions indicating errors with iterators - @ref type_error for exceptions indicating executing a member function with a wrong type - @ref out_of_range for exceptions indicating access out of the defined range - @ref other_error for exceptions indicating other library errors @internal @note To have nothrow-copy-constructible exceptions, we internally use `std::runtime_error` which can cope with arbitrary-length error messages. Intermediate strings are built with static functions and then passed to the actual constructor. @endinternal @liveexample{The following code shows how arbitrary library exceptions can be caught.,exception} @since version 3.0.0 */ class exception : public std::exception { public: /// returns the explanatory string const char* what() const noexcept override { return m.what(); } /// the id of the exception const int id; protected: exception(int id_, const char* what_arg) : id(id_), m(what_arg) {} static std::string name(const std::string& ename, int id_) { return "[json.exception." + ename + "." + std::to_string(id_) + "] "; } private: /// an exception object as storage for error messages std::runtime_error m; }; /*! @brief exception indicating a parse error This exception is thrown by the library when a parse error occurs. Parse errors can occur during the deserialization of JSON text, CBOR, MessagePack, as well as when using JSON Patch. Member @a byte holds the byte index of the last read character in the input file. Exceptions have ids 1xx. name / id | example message | description ------------------------------ | --------------- | ------------------------- json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position. json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point. json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid. json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects. json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors. json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number without a leading `0`. json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character. json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences. json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number. json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read. json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xF8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read. json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read. json.exception.parse_error.114 | parse error: Unsupported BSON record type 0x0F | The parsing of the corresponding BSON record type is not implemented (yet). @note For an input with n bytes, 1 is the index of the first character and n+1 is the index of the terminating null byte or the end of file. This also holds true when reading a byte vector (CBOR or MessagePack). @liveexample{The following code shows how a `parse_error` exception can be caught.,parse_error} @sa - @ref exception for the base class of the library exceptions @sa - @ref invalid_iterator for exceptions indicating errors with iterators @sa - @ref type_error for exceptions indicating executing a member function with a wrong type @sa - @ref out_of_range for exceptions indicating access out of the defined range @sa - @ref other_error for exceptions indicating other library errors @since version 3.0.0 */ class parse_error : public exception { public: /*! @brief create a parse error exception @param[in] id_ the id of the exception @param[in] pos the position where the error occurred (or with chars_read_total=0 if the position cannot be determined) @param[in] what_arg the explanatory string @return parse_error object */ static parse_error create(int id_, const position_t& pos, const std::string& what_arg) { std::string w = exception::name("parse_error", id_) + "parse error" + position_string(pos) + ": " + what_arg; return parse_error(id_, pos.chars_read_total, w.c_str()); } static parse_error create(int id_, std::size_t byte_, const std::string& what_arg) { std::string w = exception::name("parse_error", id_) + "parse error" + (byte_ != 0 ? (" at byte " + std::to_string(byte_)) : "") + ": " + what_arg; return parse_error(id_, byte_, w.c_str()); } /*! @brief byte index of the parse error The byte index of the last read character in the input file. @note For an input with n bytes, 1 is the index of the first character and n+1 is the index of the terminating null byte or the end of file. This also holds true when reading a byte vector (CBOR or MessagePack). */ const std::size_t byte; private: parse_error(int id_, std::size_t byte_, const char* what_arg) : exception(id_, what_arg), byte(byte_) {} static std::string position_string(const position_t& pos) { return " at line " + std::to_string(pos.lines_read + 1) + ", column " + std::to_string(pos.chars_read_current_line); } }; /*! @brief exception indicating errors with iterators This exception is thrown if iterators passed to a library function do not match the expected semantics. Exceptions have ids 2xx. name / id | example message | description ----------------------------------- | --------------- | ------------------------- json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid. json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion. json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from. json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid. json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid. json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range. json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key. json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered. json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered. json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid. json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to. json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container. json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered. json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin(). @liveexample{The following code shows how an `invalid_iterator` exception can be caught.,invalid_iterator} @sa - @ref exception for the base class of the library exceptions @sa - @ref parse_error for exceptions indicating a parse error @sa - @ref type_error for exceptions indicating executing a member function with a wrong type @sa - @ref out_of_range for exceptions indicating access out of the defined range @sa - @ref other_error for exceptions indicating other library errors @since version 3.0.0 */ class invalid_iterator : public exception { public: static invalid_iterator create(int id_, const std::string& what_arg) { std::string w = exception::name("invalid_iterator", id_) + what_arg; return invalid_iterator(id_, w.c_str()); } private: invalid_iterator(int id_, const char* what_arg) : exception(id_, what_arg) {} }; /*! @brief exception indicating executing a member function with a wrong type This exception is thrown in case of a type error; that is, a library function is executed on a JSON value whose type does not match the expected semantics. Exceptions have ids 3xx. name / id | example message | description ----------------------------- | --------------- | ------------------------- json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead. json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types. json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t &. json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types. json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types. json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types. json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types. json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types. json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types. json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types. json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types. json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types. json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined. json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers. json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive. json.exception.type_error.316 | invalid UTF-8 byte at index 10: 0x7E | The @ref dump function only works with UTF-8 encoded strings; that is, if you assign a `std::string` to a JSON value, make sure it is UTF-8 encoded. | json.exception.type_error.317 | JSON value cannot be serialized to requested format | The dynamic type of the object cannot be represented in the requested serialization format (e.g. a raw `true` or `null` JSON object cannot be serialized to BSON) | @liveexample{The following code shows how a `type_error` exception can be caught.,type_error} @sa - @ref exception for the base class of the library exceptions @sa - @ref parse_error for exceptions indicating a parse error @sa - @ref invalid_iterator for exceptions indicating errors with iterators @sa - @ref out_of_range for exceptions indicating access out of the defined range @sa - @ref other_error for exceptions indicating other library errors @since version 3.0.0 */ class type_error : public exception { public: static type_error create(int id_, const std::string& what_arg) { std::string w = exception::name("type_error", id_) + what_arg; return type_error(id_, w.c_str()); } private: type_error(int id_, const char* what_arg) : exception(id_, what_arg) {} }; /*! @brief exception indicating access out of the defined range This exception is thrown in case a library function is called on an input parameter that exceeds the expected range, for instance in case of array indices or nonexisting object keys. Exceptions have ids 4xx. name / id | example message | description ------------------------------- | --------------- | ------------------------- json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1. json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it. json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object. json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved. json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value. json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF. json.exception.out_of_range.407 | number overflow serializing '9223372036854775808' | UBJSON and BSON only support integer numbers up to 9223372036854775807. | json.exception.out_of_range.408 | excessive array size: 8658170730974374167 | The size (following `#`) of an UBJSON array or object exceeds the maximal capacity. | json.exception.out_of_range.409 | BSON key cannot contain code point U+0000 (at byte 2) | Key identifiers to be serialized to BSON cannot contain code point U+0000, since the key is stored as zero-terminated c-string | @liveexample{The following code shows how an `out_of_range` exception can be caught.,out_of_range} @sa - @ref exception for the base class of the library exceptions @sa - @ref parse_error for exceptions indicating a parse error @sa - @ref invalid_iterator for exceptions indicating errors with iterators @sa - @ref type_error for exceptions indicating executing a member function with a wrong type @sa - @ref other_error for exceptions indicating other library errors @since version 3.0.0 */ class out_of_range : public exception { public: static out_of_range create(int id_, const std::string& what_arg) { std::string w = exception::name("out_of_range", id_) + what_arg; return out_of_range(id_, w.c_str()); } private: out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {} }; /*! @brief exception indicating other library errors This exception is thrown in case of errors that cannot be classified with the other exception types. Exceptions have ids 5xx. name / id | example message | description ------------------------------ | --------------- | ------------------------- json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed. @sa - @ref exception for the base class of the library exceptions @sa - @ref parse_error for exceptions indicating a parse error @sa - @ref invalid_iterator for exceptions indicating errors with iterators @sa - @ref type_error for exceptions indicating executing a member function with a wrong type @sa - @ref out_of_range for exceptions indicating access out of the defined range @liveexample{The following code shows how an `other_error` exception can be caught.,other_error} @since version 3.0.0 */ class other_error : public exception { public: static other_error create(int id_, const std::string& what_arg) { std::string w = exception::name("other_error", id_) + what_arg; return other_error(id_, w.c_str()); } private: other_error(int id_, const char* what_arg) : exception(id_, what_arg) {} }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/macro_scope.hpp> #include <utility> // pair // This file contains all internal macro definitions // You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them // exclude unsupported compilers #if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK) #if defined(__clang__) #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400 #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers" #endif #elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER)) #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800 #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers" #endif #endif #endif // disable float-equal warnings on GCC/clang #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" #endif // disable documentation warnings on clang #if defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdocumentation" #endif // allow for portable deprecation warnings #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #define JSON_DEPRECATED __attribute__((deprecated)) #elif defined(_MSC_VER) #define JSON_DEPRECATED __declspec(deprecated) #else #define JSON_DEPRECATED #endif // allow for portable nodiscard warnings #if defined(__has_cpp_attribute) #if __has_cpp_attribute(nodiscard) #define JSON_NODISCARD [[nodiscard]] #elif __has_cpp_attribute(gnu::warn_unused_result) #define JSON_NODISCARD [[gnu::warn_unused_result]] #else #define JSON_NODISCARD #endif #else #define JSON_NODISCARD #endif // allow to disable exceptions #if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION) #define JSON_THROW(exception) throw exception #define JSON_TRY try #define JSON_CATCH(exception) catch(exception) #define JSON_INTERNAL_CATCH(exception) catch(exception) #else #include <cstdlib> #define JSON_THROW(exception) std::abort() #define JSON_TRY if(true) #define JSON_CATCH(exception) if(false) #define JSON_INTERNAL_CATCH(exception) if(false) #endif // override exception macros #if defined(JSON_THROW_USER) #undef JSON_THROW #define JSON_THROW JSON_THROW_USER #endif #if defined(JSON_TRY_USER) #undef JSON_TRY #define JSON_TRY JSON_TRY_USER #endif #if defined(JSON_CATCH_USER) #undef JSON_CATCH #define JSON_CATCH JSON_CATCH_USER #undef JSON_INTERNAL_CATCH #define JSON_INTERNAL_CATCH JSON_CATCH_USER #endif #if defined(JSON_INTERNAL_CATCH_USER) #undef JSON_INTERNAL_CATCH #define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER #endif // manual branch prediction #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #define JSON_LIKELY(x) __builtin_expect(x, 1) #define JSON_UNLIKELY(x) __builtin_expect(x, 0) #else #define JSON_LIKELY(x) x #define JSON_UNLIKELY(x) x #endif // C++ language standard detection #if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464 #define JSON_HAS_CPP_17 #define JSON_HAS_CPP_14 #elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1) #define JSON_HAS_CPP_14 #endif /*! @brief macro to briefly define a mapping between an enum and JSON @def NLOHMANN_JSON_SERIALIZE_ENUM @since version 3.4.0 */ #define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \ template<typename BasicJsonType> \ inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \ { \ static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \ static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \ auto it = std::find_if(std::begin(m), std::end(m), \ [e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \ { \ return ej_pair.first == e; \ }); \ j = ((it != std::end(m)) ? it : std::begin(m))->second; \ } \ template<typename BasicJsonType> \ inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \ { \ static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \ static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \ auto it = std::find_if(std::begin(m), std::end(m), \ [j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \ { \ return ej_pair.second == j; \ }); \ e = ((it != std::end(m)) ? it : std::begin(m))->first; \ } // Ugly macros to avoid uglier copy-paste when specializing basic_json. They // may be removed in the future once the class is split. #define NLOHMANN_BASIC_JSON_TPL_DECLARATION \ template<template<typename, typename, typename...> class ObjectType, \ template<typename, typename...> class ArrayType, \ class StringType, class BooleanType, class NumberIntegerType, \ class NumberUnsignedType, class NumberFloatType, \ template<typename> class AllocatorType, \ template<typename, typename = void> class JSONSerializer> #define NLOHMANN_BASIC_JSON_TPL \ basic_json<ObjectType, ArrayType, StringType, BooleanType, \ NumberIntegerType, NumberUnsignedType, NumberFloatType, \ AllocatorType, JSONSerializer> // #include <nlohmann/detail/meta/cpp_future.hpp> #include <ciso646> // not #include <cstddef> // size_t #include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type namespace nlohmann { namespace detail { // alias templates to reduce boilerplate template<bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type; template<typename T> using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type; // implementation of C++14 index_sequence and affiliates // source: https://stackoverflow.com/a/32223343 template<std::size_t... Ints> struct index_sequence { using type = index_sequence; using value_type = std::size_t; static constexpr std::size_t size() noexcept { return sizeof...(Ints); } }; template<class Sequence1, class Sequence2> struct merge_and_renumber; template<std::size_t... I1, std::size_t... I2> struct merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>> : index_sequence < I1..., (sizeof...(I1) + I2)... > {}; template<std::size_t N> struct make_index_sequence : merge_and_renumber < typename make_index_sequence < N / 2 >::type, typename make_index_sequence < N - N / 2 >::type > {}; template<> struct make_index_sequence<0> : index_sequence<> {}; template<> struct make_index_sequence<1> : index_sequence<0> {}; template<typename... Ts> using index_sequence_for = make_index_sequence<sizeof...(Ts)>; // dispatch utility (taken from ranges-v3) template<unsigned N> struct priority_tag : priority_tag < N - 1 > {}; template<> struct priority_tag<0> {}; // taken from ranges-v3 template<typename T> struct static_const { static constexpr T value{}; }; template<typename T> constexpr T static_const<T>::value; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/meta/type_traits.hpp> #include <ciso646> // not #include <limits> // numeric_limits #include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type #include <utility> // declval // #include <nlohmann/detail/iterators/iterator_traits.hpp> #include <iterator> // random_access_iterator_tag // #include <nlohmann/detail/meta/void_t.hpp> namespace nlohmann { namespace detail { template <typename ...Ts> struct make_void { using type = void; }; template <typename ...Ts> using void_t = typename make_void<Ts...>::type; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/meta/cpp_future.hpp> namespace nlohmann { namespace detail { template <typename It, typename = void> struct iterator_types {}; template <typename It> struct iterator_types < It, void_t<typename It::difference_type, typename It::value_type, typename It::pointer, typename It::reference, typename It::iterator_category >> { using difference_type = typename It::difference_type; using value_type = typename It::value_type; using pointer = typename It::pointer; using reference = typename It::reference; using iterator_category = typename It::iterator_category; }; // This is required as some compilers implement std::iterator_traits in a way that // doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341. template <typename T, typename = void> struct iterator_traits { }; template <typename T> struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >> : iterator_types<T> { }; template <typename T> struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>> { using iterator_category = std::random_access_iterator_tag; using value_type = T; using difference_type = ptrdiff_t; using pointer = T*; using reference = T&; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/meta/cpp_future.hpp> // #include <nlohmann/detail/meta/detected.hpp> #include <type_traits> // #include <nlohmann/detail/meta/void_t.hpp> // http://en.cppreference.com/w/cpp/experimental/is_detected namespace nlohmann { namespace detail { struct nonesuch { nonesuch() = delete; ~nonesuch() = delete; nonesuch(nonesuch const&) = delete; nonesuch(nonesuch const&&) = delete; void operator=(nonesuch const&) = delete; void operator=(nonesuch&&) = delete; }; template <class Default, class AlwaysVoid, template <class...> class Op, class... Args> struct detector { using value_t = std::false_type; using type = Default; }; template <class Default, template <class...> class Op, class... Args> struct detector<Default, void_t<Op<Args...>>, Op, Args...> { using value_t = std::true_type; using type = Op<Args...>; }; template <template <class...> class Op, class... Args> using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t; template <template <class...> class Op, class... Args> using detected_t = typename detector<nonesuch, void, Op, Args...>::type; template <class Default, template <class...> class Op, class... Args> using detected_or = detector<Default, void, Op, Args...>; template <class Default, template <class...> class Op, class... Args> using detected_or_t = typename detected_or<Default, Op, Args...>::type; template <class Expected, template <class...> class Op, class... Args> using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>; template <class To, template <class...> class Op, class... Args> using is_detected_convertible = std::is_convertible<detected_t<Op, Args...>, To>; } // namespace detail } // namespace nlohmann // #include <nlohmann/json_fwd.hpp> #ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_ #define INCLUDE_NLOHMANN_JSON_FWD_HPP_ #include <cstdint> // int64_t, uint64_t #include <map> // map #include <memory> // allocator #include <string> // string #include <vector> // vector /*! @brief namespace for Niels Lohmann @see https://github.com/nlohmann @since version 1.0.0 */ namespace nlohmann { /*! @brief default JSONSerializer template argument This serializer ignores the template arguments and uses ADL ([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl)) for serialization. */ template<typename T = void, typename SFINAE = void> struct adl_serializer; template<template<typename U, typename V, typename... Args> class ObjectType = std::map, template<typename U, typename... Args> class ArrayType = std::vector, class StringType = std::string, class BooleanType = bool, class NumberIntegerType = std::int64_t, class NumberUnsignedType = std::uint64_t, class NumberFloatType = double, template<typename U> class AllocatorType = std::allocator, template<typename T, typename SFINAE = void> class JSONSerializer = adl_serializer> class basic_json; /*! @brief JSON Pointer A JSON pointer defines a string syntax for identifying a specific value within a JSON document. It can be used with functions `at` and `operator[]`. Furthermore, JSON pointers are the base for JSON patches. @sa [RFC 6901](https://tools.ietf.org/html/rfc6901) @since version 2.0.0 */ template<typename BasicJsonType> class json_pointer; /*! @brief default JSON class This type is the default specialization of the @ref basic_json class which uses the standard template types. @since version 1.0.0 */ using json = basic_json<>; } // namespace nlohmann #endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_ namespace nlohmann { /*! @brief detail namespace with internal helper functions This namespace collects functions that should not be exposed, implementations of some @ref basic_json methods, and meta-programming helpers. @since version 2.1.0 */ namespace detail { ///////////// // helpers // ///////////// // Note to maintainers: // // Every trait in this file expects a non CV-qualified type. // The only exceptions are in the 'aliases for detected' section // (i.e. those of the form: decltype(T::member_function(std::declval<T>()))) // // In this case, T has to be properly CV-qualified to constraint the function arguments // (e.g. to_json(BasicJsonType&, const T&)) template<typename> struct is_basic_json : std::false_type {}; NLOHMANN_BASIC_JSON_TPL_DECLARATION struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {}; ////////////////////////// // aliases for detected // ////////////////////////// template <typename T> using mapped_type_t = typename T::mapped_type; template <typename T> using key_type_t = typename T::key_type; template <typename T> using value_type_t = typename T::value_type; template <typename T> using difference_type_t = typename T::difference_type; template <typename T> using pointer_t = typename T::pointer; template <typename T> using reference_t = typename T::reference; template <typename T> using iterator_category_t = typename T::iterator_category; template <typename T> using iterator_t = typename T::iterator; template <typename T, typename... Args> using to_json_function = decltype(T::to_json(std::declval<Args>()...)); template <typename T, typename... Args> using from_json_function = decltype(T::from_json(std::declval<Args>()...)); template <typename T, typename U> using get_template_function = decltype(std::declval<T>().template get<U>()); // trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists template <typename BasicJsonType, typename T, typename = void> struct has_from_json : std::false_type {}; template <typename BasicJsonType, typename T> struct has_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>> { using serializer = typename BasicJsonType::template json_serializer<T, void>; static constexpr bool value = is_detected_exact<void, from_json_function, serializer, const BasicJsonType&, T&>::value; }; // This trait checks if JSONSerializer<T>::from_json(json const&) exists // this overload is used for non-default-constructible user-defined-types template <typename BasicJsonType, typename T, typename = void> struct has_non_default_from_json : std::false_type {}; template<typename BasicJsonType, typename T> struct has_non_default_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>> { using serializer = typename BasicJsonType::template json_serializer<T, void>; static constexpr bool value = is_detected_exact<T, from_json_function, serializer, const BasicJsonType&>::value; }; // This trait checks if BasicJsonType::json_serializer<T>::to_json exists // Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion. template <typename BasicJsonType, typename T, typename = void> struct has_to_json : std::false_type {}; template <typename BasicJsonType, typename T> struct has_to_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>> { using serializer = typename BasicJsonType::template json_serializer<T, void>; static constexpr bool value = is_detected_exact<void, to_json_function, serializer, BasicJsonType&, T>::value; }; /////////////////// // is_ functions // /////////////////// template <typename T, typename = void> struct is_iterator_traits : std::false_type {}; template <typename T> struct is_iterator_traits<iterator_traits<T>> { private: using traits = iterator_traits<T>; public: static constexpr auto value = is_detected<value_type_t, traits>::value && is_detected<difference_type_t, traits>::value && is_detected<pointer_t, traits>::value && is_detected<iterator_category_t, traits>::value && is_detected<reference_t, traits>::value; }; // source: https://stackoverflow.com/a/37193089/4116453 template <typename T, typename = void> struct is_complete_type : std::false_type {}; template <typename T> struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {}; template <typename BasicJsonType, typename CompatibleObjectType, typename = void> struct is_compatible_object_type_impl : std::false_type {}; template <typename BasicJsonType, typename CompatibleObjectType> struct is_compatible_object_type_impl < BasicJsonType, CompatibleObjectType, enable_if_t<is_detected<mapped_type_t, CompatibleObjectType>::value and is_detected<key_type_t, CompatibleObjectType>::value >> { using object_t = typename BasicJsonType::object_t; // macOS's is_constructible does not play well with nonesuch... static constexpr bool value = std::is_constructible<typename object_t::key_type, typename CompatibleObjectType::key_type>::value and std::is_constructible<typename object_t::mapped_type, typename CompatibleObjectType::mapped_type>::value; }; template <typename BasicJsonType, typename CompatibleObjectType> struct is_compatible_object_type : is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {}; template <typename BasicJsonType, typename ConstructibleObjectType, typename = void> struct is_constructible_object_type_impl : std::false_type {}; template <typename BasicJsonType, typename ConstructibleObjectType> struct is_constructible_object_type_impl < BasicJsonType, ConstructibleObjectType, enable_if_t<is_detected<mapped_type_t, ConstructibleObjectType>::value and is_detected<key_type_t, ConstructibleObjectType>::value >> { using object_t = typename BasicJsonType::object_t; static constexpr bool value = (std::is_constructible<typename ConstructibleObjectType::key_type, typename object_t::key_type>::value and std::is_same<typename object_t::mapped_type, typename ConstructibleObjectType::mapped_type>::value) or (has_from_json<BasicJsonType, typename ConstructibleObjectType::mapped_type>::value or has_non_default_from_json<BasicJsonType, typename ConstructibleObjectType::mapped_type >::value); }; template <typename BasicJsonType, typename ConstructibleObjectType> struct is_constructible_object_type : is_constructible_object_type_impl<BasicJsonType, ConstructibleObjectType> {}; template <typename BasicJsonType, typename CompatibleStringType, typename = void> struct is_compatible_string_type_impl : std::false_type {}; template <typename BasicJsonType, typename CompatibleStringType> struct is_compatible_string_type_impl < BasicJsonType, CompatibleStringType, enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, CompatibleStringType>::value >> { static constexpr auto value = std::is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value; }; template <typename BasicJsonType, typename ConstructibleStringType> struct is_compatible_string_type : is_compatible_string_type_impl<BasicJsonType, ConstructibleStringType> {}; template <typename BasicJsonType, typename ConstructibleStringType, typename = void> struct is_constructible_string_type_impl : std::false_type {}; template <typename BasicJsonType, typename ConstructibleStringType> struct is_constructible_string_type_impl < BasicJsonType, ConstructibleStringType, enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, ConstructibleStringType>::value >> { static constexpr auto value = std::is_constructible<ConstructibleStringType, typename BasicJsonType::string_t>::value; }; template <typename BasicJsonType, typename ConstructibleStringType> struct is_constructible_string_type : is_constructible_string_type_impl<BasicJsonType, ConstructibleStringType> {}; template <typename BasicJsonType, typename CompatibleArrayType, typename = void> struct is_compatible_array_type_impl : std::false_type {}; template <typename BasicJsonType, typename CompatibleArrayType> struct is_compatible_array_type_impl < BasicJsonType, CompatibleArrayType, enable_if_t<is_detected<value_type_t, CompatibleArrayType>::value and is_detected<iterator_t, CompatibleArrayType>::value and // This is needed because json_reverse_iterator has a ::iterator type... // Therefore it is detected as a CompatibleArrayType. // The real fix would be to have an Iterable concept. not is_iterator_traits< iterator_traits<CompatibleArrayType>>::value >> { static constexpr bool value = std::is_constructible<BasicJsonType, typename CompatibleArrayType::value_type>::value; }; template <typename BasicJsonType, typename CompatibleArrayType> struct is_compatible_array_type : is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {}; template <typename BasicJsonType, typename ConstructibleArrayType, typename = void> struct is_constructible_array_type_impl : std::false_type {}; template <typename BasicJsonType, typename ConstructibleArrayType> struct is_constructible_array_type_impl < BasicJsonType, ConstructibleArrayType, enable_if_t<std::is_same<ConstructibleArrayType, typename BasicJsonType::value_type>::value >> : std::true_type {}; template <typename BasicJsonType, typename ConstructibleArrayType> struct is_constructible_array_type_impl < BasicJsonType, ConstructibleArrayType, enable_if_t<not std::is_same<ConstructibleArrayType, typename BasicJsonType::value_type>::value and is_detected<value_type_t, ConstructibleArrayType>::value and is_detected<iterator_t, ConstructibleArrayType>::value and is_complete_type< detected_t<value_type_t, ConstructibleArrayType>>::value >> { static constexpr bool value = // This is needed because json_reverse_iterator has a ::iterator type, // furthermore, std::back_insert_iterator (and other iterators) have a base class `iterator`... // Therefore it is detected as a ConstructibleArrayType. // The real fix would be to have an Iterable concept. not is_iterator_traits < iterator_traits<ConstructibleArrayType >>::value and (std::is_same<typename ConstructibleArrayType::value_type, typename BasicJsonType::array_t::value_type>::value or has_from_json<BasicJsonType, typename ConstructibleArrayType::value_type>::value or has_non_default_from_json < BasicJsonType, typename ConstructibleArrayType::value_type >::value); }; template <typename BasicJsonType, typename ConstructibleArrayType> struct is_constructible_array_type : is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {}; template <typename RealIntegerType, typename CompatibleNumberIntegerType, typename = void> struct is_compatible_integer_type_impl : std::false_type {}; template <typename RealIntegerType, typename CompatibleNumberIntegerType> struct is_compatible_integer_type_impl < RealIntegerType, CompatibleNumberIntegerType, enable_if_t<std::is_integral<RealIntegerType>::value and std::is_integral<CompatibleNumberIntegerType>::value and not std::is_same<bool, CompatibleNumberIntegerType>::value >> { // is there an assert somewhere on overflows? using RealLimits = std::numeric_limits<RealIntegerType>; using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>; static constexpr auto value = std::is_constructible<RealIntegerType, CompatibleNumberIntegerType>::value and CompatibleLimits::is_integer and RealLimits::is_signed == CompatibleLimits::is_signed; }; template <typename RealIntegerType, typename CompatibleNumberIntegerType> struct is_compatible_integer_type : is_compatible_integer_type_impl<RealIntegerType, CompatibleNumberIntegerType> {}; template <typename BasicJsonType, typename CompatibleType, typename = void> struct is_compatible_type_impl: std::false_type {}; template <typename BasicJsonType, typename CompatibleType> struct is_compatible_type_impl < BasicJsonType, CompatibleType, enable_if_t<is_complete_type<CompatibleType>::value >> { static constexpr bool value = has_to_json<BasicJsonType, CompatibleType>::value; }; template <typename BasicJsonType, typename CompatibleType> struct is_compatible_type : is_compatible_type_impl<BasicJsonType, CompatibleType> {}; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/value_t.hpp> #include <array> // array #include <ciso646> // and #include <cstddef> // size_t #include <cstdint> // uint8_t #include <string> // string namespace nlohmann { namespace detail { /////////////////////////// // JSON type enumeration // /////////////////////////// /*! @brief the JSON type enumeration This enumeration collects the different JSON types. It is internally used to distinguish the stored values, and the functions @ref basic_json::is_null(), @ref basic_json::is_object(), @ref basic_json::is_array(), @ref basic_json::is_string(), @ref basic_json::is_boolean(), @ref basic_json::is_number() (with @ref basic_json::is_number_integer(), @ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()), @ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and @ref basic_json::is_structured() rely on it. @note There are three enumeration entries (number_integer, number_unsigned, and number_float), because the library distinguishes these three types for numbers: @ref basic_json::number_unsigned_t is used for unsigned integers, @ref basic_json::number_integer_t is used for signed integers, and @ref basic_json::number_float_t is used for floating-point numbers or to approximate integers which do not fit in the limits of their respective type. @sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON value with the default value for a given type @since version 1.0.0 */ enum class value_t : std::uint8_t { null, ///< null value object, ///< object (unordered set of name/value pairs) array, ///< array (ordered collection of values) string, ///< string value boolean, ///< boolean value number_integer, ///< number value (signed integer) number_unsigned, ///< number value (unsigned integer) number_float, ///< number value (floating-point) discarded ///< discarded by the the parser callback function }; /*! @brief comparison operator for JSON types Returns an ordering that is similar to Python: - order: null < boolean < number < object < array < string - furthermore, each type is not smaller than itself - discarded values are not comparable @since version 1.0.0 */ inline bool operator<(const value_t lhs, const value_t rhs) noexcept { static constexpr std::array<std::uint8_t, 8> order = {{ 0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */, 1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */ } }; const auto l_index = static_cast<std::size_t>(lhs); const auto r_index = static_cast<std::size_t>(rhs); return l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index]; } } // namespace detail } // namespace nlohmann namespace nlohmann { namespace detail { template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename std::nullptr_t& n) { if (JSON_UNLIKELY(not j.is_null())) { JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name()))); } n = nullptr; } // overloads for basic_json template parameters template<typename BasicJsonType, typename ArithmeticType, enable_if_t<std::is_arithmetic<ArithmeticType>::value and not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value, int> = 0> void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val) { switch (static_cast<value_t>(j)) { case value_t::number_unsigned: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>()); break; } case value_t::number_integer: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>()); break; } case value_t::number_float: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>()); break; } default: JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name()))); } } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b) { if (JSON_UNLIKELY(not j.is_boolean())) { JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name()))); } b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>(); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s) { if (JSON_UNLIKELY(not j.is_string())) { JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name()))); } s = *j.template get_ptr<const typename BasicJsonType::string_t*>(); } template < typename BasicJsonType, typename ConstructibleStringType, enable_if_t < is_constructible_string_type<BasicJsonType, ConstructibleStringType>::value and not std::is_same<typename BasicJsonType::string_t, ConstructibleStringType>::value, int > = 0 > void from_json(const BasicJsonType& j, ConstructibleStringType& s) { if (JSON_UNLIKELY(not j.is_string())) { JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name()))); } s = *j.template get_ptr<const typename BasicJsonType::string_t*>(); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val) { get_arithmetic_value(j, val); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val) { get_arithmetic_value(j, val); } template<typename BasicJsonType> void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val) { get_arithmetic_value(j, val); } template<typename BasicJsonType, typename EnumType, enable_if_t<std::is_enum<EnumType>::value, int> = 0> void from_json(const BasicJsonType& j, EnumType& e) { typename std::underlying_type<EnumType>::type val; get_arithmetic_value(j, val); e = static_cast<EnumType>(val); } // forward_list doesn't have an insert method template<typename BasicJsonType, typename T, typename Allocator, enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0> void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l) { if (JSON_UNLIKELY(not j.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); } std::transform(j.rbegin(), j.rend(), std::front_inserter(l), [](const BasicJsonType & i) { return i.template get<T>(); }); } // valarray doesn't have an insert method template<typename BasicJsonType, typename T, enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0> void from_json(const BasicJsonType& j, std::valarray<T>& l) { if (JSON_UNLIKELY(not j.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); } l.resize(j.size()); std::copy(j.m_value.array->begin(), j.m_value.array->end(), std::begin(l)); } template<typename BasicJsonType> void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/) { arr = *j.template get_ptr<const typename BasicJsonType::array_t*>(); } template <typename BasicJsonType, typename T, std::size_t N> auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr, priority_tag<2> /*unused*/) -> decltype(j.template get<T>(), void()) { for (std::size_t i = 0; i < N; ++i) { arr[i] = j.at(i).template get<T>(); } } template<typename BasicJsonType, typename ConstructibleArrayType> auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/) -> decltype( arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()), j.template get<typename ConstructibleArrayType::value_type>(), void()) { using std::end; arr.reserve(j.size()); std::transform(j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i) { // get<BasicJsonType>() returns *this, this won't call a from_json // method when value_type is BasicJsonType return i.template get<typename ConstructibleArrayType::value_type>(); }); } template <typename BasicJsonType, typename ConstructibleArrayType> void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<0> /*unused*/) { using std::end; std::transform( j.begin(), j.end(), std::inserter(arr, end(arr)), [](const BasicJsonType & i) { // get<BasicJsonType>() returns *this, this won't call a from_json // method when value_type is BasicJsonType return i.template get<typename ConstructibleArrayType::value_type>(); }); } template <typename BasicJsonType, typename ConstructibleArrayType, enable_if_t < is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value and not is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value and not is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value and not is_basic_json<ConstructibleArrayType>::value, int > = 0 > auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr) -> decltype(from_json_array_impl(j, arr, priority_tag<3> {}), j.template get<typename ConstructibleArrayType::value_type>(), void()) { if (JSON_UNLIKELY(not j.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); } from_json_array_impl(j, arr, priority_tag<3> {}); } template<typename BasicJsonType, typename ConstructibleObjectType, enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0> void from_json(const BasicJsonType& j, ConstructibleObjectType& obj) { if (JSON_UNLIKELY(not j.is_object())) { JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name()))); } auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>(); using value_type = typename ConstructibleObjectType::value_type; std::transform( inner_object->begin(), inner_object->end(), std::inserter(obj, obj.begin()), [](typename BasicJsonType::object_t::value_type const & p) { return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>()); }); } // overload for arithmetic types, not chosen for basic_json template arguments // (BooleanType, etc..); note: Is it really necessary to provide explicit // overloads for boolean_t etc. in case of a custom BooleanType which is not // an arithmetic type? template<typename BasicJsonType, typename ArithmeticType, enable_if_t < std::is_arithmetic<ArithmeticType>::value and not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value, int> = 0> void from_json(const BasicJsonType& j, ArithmeticType& val) { switch (static_cast<value_t>(j)) { case value_t::number_unsigned: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>()); break; } case value_t::number_integer: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>()); break; } case value_t::number_float: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>()); break; } case value_t::boolean: { val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>()); break; } default: JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name()))); } } template<typename BasicJsonType, typename A1, typename A2> void from_json(const BasicJsonType& j, std::pair<A1, A2>& p) { p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()}; } template<typename BasicJsonType, typename Tuple, std::size_t... Idx> void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...> /*unused*/) { t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...); } template<typename BasicJsonType, typename... Args> void from_json(const BasicJsonType& j, std::tuple<Args...>& t) { from_json_tuple_impl(j, t, index_sequence_for<Args...> {}); } template <typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator, typename = enable_if_t<not std::is_constructible< typename BasicJsonType::string_t, Key>::value>> void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m) { if (JSON_UNLIKELY(not j.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); } for (const auto& p : j) { if (JSON_UNLIKELY(not p.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name()))); } m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>()); } } template <typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator, typename = enable_if_t<not std::is_constructible< typename BasicJsonType::string_t, Key>::value>> void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m) { if (JSON_UNLIKELY(not j.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name()))); } for (const auto& p : j) { if (JSON_UNLIKELY(not p.is_array())) { JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name()))); } m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>()); } } struct from_json_fn { template<typename BasicJsonType, typename T> auto operator()(const BasicJsonType& j, T& val) const noexcept(noexcept(from_json(j, val))) -> decltype(from_json(j, val), void()) { return from_json(j, val); } }; } // namespace detail /// namespace to hold default `from_json` function /// to see why this is required: /// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html namespace { constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value; } // namespace } // namespace nlohmann // #include <nlohmann/detail/conversions/to_json.hpp> #include <algorithm> // copy #include <ciso646> // or, and, not #include <iterator> // begin, end #include <string> // string #include <tuple> // tuple, get #include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type #include <utility> // move, forward, declval, pair #include <valarray> // valarray #include <vector> // vector // #include <nlohmann/detail/iterators/iteration_proxy.hpp> #include <cstddef> // size_t #include <iterator> // input_iterator_tag #include <string> // string, to_string #include <tuple> // tuple_size, get, tuple_element // #include <nlohmann/detail/meta/type_traits.hpp> // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { namespace detail { template <typename IteratorType> class iteration_proxy_value { public: using difference_type = std::ptrdiff_t; using value_type = iteration_proxy_value; using pointer = value_type * ; using reference = value_type & ; using iterator_category = std::input_iterator_tag; private: /// the iterator IteratorType anchor; /// an index for arrays (used to create key names) std::size_t array_index = 0; /// last stringified array index mutable std::size_t array_index_last = 0; /// a string representation of the array index mutable std::string array_index_str = "0"; /// an empty string (to return a reference for primitive values) const std::string empty_str = ""; public: explicit iteration_proxy_value(IteratorType it) noexcept : anchor(it) {} /// dereference operator (needed for range-based for) iteration_proxy_value& operator*() { return *this; } /// increment operator (needed for range-based for) iteration_proxy_value& operator++() { ++anchor; ++array_index; return *this; } /// equality operator (needed for InputIterator) bool operator==(const iteration_proxy_value& o) const { return anchor == o.anchor; } /// inequality operator (needed for range-based for) bool operator!=(const iteration_proxy_value& o) const { return anchor != o.anchor; } /// return key of the iterator const std::string& key() const { assert(anchor.m_object != nullptr); switch (anchor.m_object->type()) { // use integer array index as key case value_t::array: { if (array_index != array_index_last) { array_index_str = std::to_string(array_index); array_index_last = array_index; } return array_index_str; } // use key from the object case value_t::object: return anchor.key(); // use an empty key for all primitive types default: return empty_str; } } /// return value of the iterator typename IteratorType::reference value() const { return anchor.value(); } }; /// proxy class for the items() function template<typename IteratorType> class iteration_proxy { private: /// the container to iterate typename IteratorType::reference container; public: /// construct iteration proxy from a container explicit iteration_proxy(typename IteratorType::reference cont) noexcept : container(cont) {} /// return iterator begin (needed for range-based for) iteration_proxy_value<IteratorType> begin() noexcept { return iteration_proxy_value<IteratorType>(container.begin()); } /// return iterator end (needed for range-based for) iteration_proxy_value<IteratorType> end() noexcept { return iteration_proxy_value<IteratorType>(container.end()); } }; // Structured Bindings Support // For further reference see https://blog.tartanllama.xyz/structured-bindings/ // And see https://github.com/nlohmann/json/pull/1391 template <std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0> auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key()) { return i.key(); } // Structured Bindings Support // For further reference see https://blog.tartanllama.xyz/structured-bindings/ // And see https://github.com/nlohmann/json/pull/1391 template <std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0> auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value()) { return i.value(); } } // namespace detail } // namespace nlohmann // The Addition to the STD Namespace is required to add // Structured Bindings Support to the iteration_proxy_value class // For further reference see https://blog.tartanllama.xyz/structured-bindings/ // And see https://github.com/nlohmann/json/pull/1391 namespace std { #if defined(__clang__) // Fix: https://github.com/nlohmann/json/issues/1401 #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wmismatched-tags" #endif template <typename IteratorType> class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>> : public std::integral_constant<std::size_t, 2> {}; template <std::size_t N, typename IteratorType> class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >> { public: using type = decltype( get<N>(std::declval < ::nlohmann::detail::iteration_proxy_value<IteratorType >> ())); }; #if defined(__clang__) #pragma clang diagnostic pop #endif } // namespace std // #include <nlohmann/detail/meta/cpp_future.hpp> // #include <nlohmann/detail/meta/type_traits.hpp> // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { namespace detail { ////////////////// // constructors // ////////////////// template<value_t> struct external_constructor; template<> struct external_constructor<value_t::boolean> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept { j.m_type = value_t::boolean; j.m_value = b; j.assert_invariant(); } }; template<> struct external_constructor<value_t::string> { template<typename BasicJsonType> static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s) { j.m_type = value_t::string; j.m_value = s; j.assert_invariant(); } template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s) { j.m_type = value_t::string; j.m_value = std::move(s); j.assert_invariant(); } template<typename BasicJsonType, typename CompatibleStringType, enable_if_t<not std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value, int> = 0> static void construct(BasicJsonType& j, const CompatibleStringType& str) { j.m_type = value_t::string; j.m_value.string = j.template create<typename BasicJsonType::string_t>(str); j.assert_invariant(); } }; template<> struct external_constructor<value_t::number_float> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept { j.m_type = value_t::number_float; j.m_value = val; j.assert_invariant(); } }; template<> struct external_constructor<value_t::number_unsigned> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept { j.m_type = value_t::number_unsigned; j.m_value = val; j.assert_invariant(); } }; template<> struct external_constructor<value_t::number_integer> { template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept { j.m_type = value_t::number_integer; j.m_value = val; j.assert_invariant(); } }; template<> struct external_constructor<value_t::array> { template<typename BasicJsonType> static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr) { j.m_type = value_t::array; j.m_value = arr; j.assert_invariant(); } template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr) { j.m_type = value_t::array; j.m_value = std::move(arr); j.assert_invariant(); } template<typename BasicJsonType, typename CompatibleArrayType, enable_if_t<not std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value, int> = 0> static void construct(BasicJsonType& j, const CompatibleArrayType& arr) { using std::begin; using std::end; j.m_type = value_t::array; j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr)); j.assert_invariant(); } template<typename BasicJsonType> static void construct(BasicJsonType& j, const std::vector<bool>& arr) { j.m_type = value_t::array; j.m_value = value_t::array; j.m_value.array->reserve(arr.size()); for (const bool x : arr) { j.m_value.array->push_back(x); } j.assert_invariant(); } template<typename BasicJsonType, typename T, enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0> static void construct(BasicJsonType& j, const std::valarray<T>& arr) { j.m_type = value_t::array; j.m_value = value_t::array; j.m_value.array->resize(arr.size()); std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin()); j.assert_invariant(); } }; template<> struct external_constructor<value_t::object> { template<typename BasicJsonType> static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj) { j.m_type = value_t::object; j.m_value = obj; j.assert_invariant(); } template<typename BasicJsonType> static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj) { j.m_type = value_t::object; j.m_value = std::move(obj); j.assert_invariant(); } template<typename BasicJsonType, typename CompatibleObjectType, enable_if_t<not std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int> = 0> static void construct(BasicJsonType& j, const CompatibleObjectType& obj) { using std::begin; using std::end; j.m_type = value_t::object; j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj)); j.assert_invariant(); } }; ///////////// // to_json // ///////////// template<typename BasicJsonType, typename T, enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0> void to_json(BasicJsonType& j, T b) noexcept { external_constructor<value_t::boolean>::construct(j, b); } template<typename BasicJsonType, typename CompatibleString, enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0> void to_json(BasicJsonType& j, const CompatibleString& s) { external_constructor<value_t::string>::construct(j, s); } template<typename BasicJsonType> void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s) { external_constructor<value_t::string>::construct(j, std::move(s)); } template<typename BasicJsonType, typename FloatType, enable_if_t<std::is_floating_point<FloatType>::value, int> = 0> void to_json(BasicJsonType& j, FloatType val) noexcept { external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val)); } template<typename BasicJsonType, typename CompatibleNumberUnsignedType, enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0> void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept { external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val)); } template<typename BasicJsonType, typename CompatibleNumberIntegerType, enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0> void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept { external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val)); } template<typename BasicJsonType, typename EnumType, enable_if_t<std::is_enum<EnumType>::value, int> = 0> void to_json(BasicJsonType& j, EnumType e) noexcept { using underlying_type = typename std::underlying_type<EnumType>::type; external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e)); } template<typename BasicJsonType> void to_json(BasicJsonType& j, const std::vector<bool>& e) { external_constructor<value_t::array>::construct(j, e); } template <typename BasicJsonType, typename CompatibleArrayType, enable_if_t<is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value and not is_compatible_object_type< BasicJsonType, CompatibleArrayType>::value and not is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value and not is_basic_json<CompatibleArrayType>::value, int> = 0> void to_json(BasicJsonType& j, const CompatibleArrayType& arr) { external_constructor<value_t::array>::construct(j, arr); } template<typename BasicJsonType, typename T, enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0> void to_json(BasicJsonType& j, const std::valarray<T>& arr) { external_constructor<value_t::array>::construct(j, std::move(arr)); } template<typename BasicJsonType> void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr) { external_constructor<value_t::array>::construct(j, std::move(arr)); } template<typename BasicJsonType, typename CompatibleObjectType, enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value and not is_basic_json<CompatibleObjectType>::value, int> = 0> void to_json(BasicJsonType& j, const CompatibleObjectType& obj) { external_constructor<value_t::object>::construct(j, obj); } template<typename BasicJsonType> void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj) { external_constructor<value_t::object>::construct(j, std::move(obj)); } template < typename BasicJsonType, typename T, std::size_t N, enable_if_t<not std::is_constructible<typename BasicJsonType::string_t, const T(&)[N]>::value, int> = 0 > void to_json(BasicJsonType& j, const T(&arr)[N]) { external_constructor<value_t::array>::construct(j, arr); } template<typename BasicJsonType, typename... Args> void to_json(BasicJsonType& j, const std::pair<Args...>& p) { j = { p.first, p.second }; } // for https://github.com/nlohmann/json/pull/1134 template < typename BasicJsonType, typename T, enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0> void to_json(BasicJsonType& j, const T& b) { j = { {b.key(), b.value()} }; } template<typename BasicJsonType, typename Tuple, std::size_t... Idx> void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/) { j = { std::get<Idx>(t)... }; } template<typename BasicJsonType, typename... Args> void to_json(BasicJsonType& j, const std::tuple<Args...>& t) { to_json_tuple_impl(j, t, index_sequence_for<Args...> {}); } struct to_json_fn { template<typename BasicJsonType, typename T> auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val)))) -> decltype(to_json(j, std::forward<T>(val)), void()) { return to_json(j, std::forward<T>(val)); } }; } // namespace detail /// namespace to hold default `to_json` function namespace { constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value; } // namespace } // namespace nlohmann namespace nlohmann { template<typename, typename> struct adl_serializer { /*! @brief convert a JSON value to any value type This function is usually called by the `get()` function of the @ref basic_json class (either explicit or via conversion operators). @param[in] j JSON value to read from @param[in,out] val value to write to */ template<typename BasicJsonType, typename ValueType> static auto from_json(BasicJsonType&& j, ValueType& val) noexcept( noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val))) -> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void()) { ::nlohmann::from_json(std::forward<BasicJsonType>(j), val); } /*! @brief convert any value type to a JSON value This function is usually called by the constructors of the @ref basic_json class. @param[in,out] j JSON value to write to @param[in] val value to read from */ template <typename BasicJsonType, typename ValueType> static auto to_json(BasicJsonType& j, ValueType&& val) noexcept( noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val)))) -> decltype(::nlohmann::to_json(j, std::forward<ValueType>(val)), void()) { ::nlohmann::to_json(j, std::forward<ValueType>(val)); } }; } // namespace nlohmann // #include <nlohmann/detail/conversions/from_json.hpp> // #include <nlohmann/detail/conversions/to_json.hpp> // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/input/binary_reader.hpp> #include <algorithm> // generate_n #include <array> // array #include <cassert> // assert #include <cmath> // ldexp #include <cstddef> // size_t #include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t #include <cstdio> // snprintf #include <cstring> // memcpy #include <iterator> // back_inserter #include <limits> // numeric_limits #include <string> // char_traits, string #include <utility> // make_pair, move // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/input/input_adapters.hpp> #include <array> // array #include <cassert> // assert #include <cstddef> // size_t #include <cstdio> //FILE * #include <cstring> // strlen #include <istream> // istream #include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next #include <memory> // shared_ptr, make_shared, addressof #include <numeric> // accumulate #include <string> // string, char_traits #include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer #include <utility> // pair, declval // #include <nlohmann/detail/iterators/iterator_traits.hpp> // #include <nlohmann/detail/macro_scope.hpp> namespace nlohmann { namespace detail { /// the supported input formats enum class input_format_t { json, cbor, msgpack, ubjson, bson }; //////////////////// // input adapters // //////////////////// /*! @brief abstract input adapter interface Produces a stream of std::char_traits<char>::int_type characters from a std::istream, a buffer, or some other input type. Accepts the return of exactly one non-EOF character for future input. The int_type characters returned consist of all valid char values as positive values (typically unsigned char), plus an EOF value outside that range, specified by the value of the function std::char_traits<char>::eof(). This value is typically -1, but could be any arbitrary value which is not a valid char value. */ struct input_adapter_protocol { /// get a character [0,255] or std::char_traits<char>::eof(). virtual std::char_traits<char>::int_type get_character() = 0; virtual ~input_adapter_protocol() = default; }; /// a type to simplify interfaces using input_adapter_t = std::shared_ptr<input_adapter_protocol>; /*! Input adapter for stdio file access. This adapter read only 1 byte and do not use any buffer. This adapter is a very low level adapter. */ class file_input_adapter : public input_adapter_protocol { public: explicit file_input_adapter(std::FILE* f) noexcept : m_file(f) {} // make class move-only file_input_adapter(const file_input_adapter&) = delete; file_input_adapter(file_input_adapter&&) = default; file_input_adapter& operator=(const file_input_adapter&) = delete; file_input_adapter& operator=(file_input_adapter&&) = default; ~file_input_adapter() override = default; std::char_traits<char>::int_type get_character() noexcept override { return std::fgetc(m_file); } private: /// the file pointer to read from std::FILE* m_file; }; /*! Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at beginning of input. Does not support changing the underlying std::streambuf in mid-input. Maintains underlying std::istream and std::streambuf to support subsequent use of standard std::istream operations to process any input characters following those used in parsing the JSON input. Clears the std::istream flags; any input errors (e.g., EOF) will be detected by the first subsequent call for input from the std::istream. */ class input_stream_adapter : public input_adapter_protocol { public: ~input_stream_adapter() override { // clear stream flags; we use underlying streambuf I/O, do not // maintain ifstream flags, except eof is.clear(is.rdstate() & std::ios::eofbit); } explicit input_stream_adapter(std::istream& i) : is(i), sb(*i.rdbuf()) {} // delete because of pointer members input_stream_adapter(const input_stream_adapter&) = delete; input_stream_adapter& operator=(input_stream_adapter&) = delete; input_stream_adapter(input_stream_adapter&&) = delete; input_stream_adapter& operator=(input_stream_adapter&&) = delete; // std::istream/std::streambuf use std::char_traits<char>::to_int_type, to // ensure that std::char_traits<char>::eof() and the character 0xFF do not // end up as the same value, eg. 0xFFFFFFFF. std::char_traits<char>::int_type get_character() override { auto res = sb.sbumpc(); // set eof manually, as we don't use the istream interface. if (res == EOF) { is.clear(is.rdstate() | std::ios::eofbit); } return res; } private: /// the associated input stream std::istream& is; std::streambuf& sb; }; /// input adapter for buffer input class input_buffer_adapter : public input_adapter_protocol { public: input_buffer_adapter(const char* b, const std::size_t l) noexcept : cursor(b), limit(b + l) {} // delete because of pointer members input_buffer_adapter(const input_buffer_adapter&) = delete; input_buffer_adapter& operator=(input_buffer_adapter&) = delete; input_buffer_adapter(input_buffer_adapter&&) = delete; input_buffer_adapter& operator=(input_buffer_adapter&&) = delete; ~input_buffer_adapter() override = default; std::char_traits<char>::int_type get_character() noexcept override { if (JSON_LIKELY(cursor < limit)) { return std::char_traits<char>::to_int_type(*(cursor++)); } return std::char_traits<char>::eof(); } private: /// pointer to the current character const char* cursor; /// pointer past the last character const char* const limit; }; template<typename WideStringType, size_t T> struct wide_string_input_helper { // UTF-32 static void fill_buffer(const WideStringType& str, size_t& current_wchar, std::array<std::char_traits<char>::int_type, 4>& utf8_bytes, size_t& utf8_bytes_index, size_t& utf8_bytes_filled) { utf8_bytes_index = 0; if (current_wchar == str.size()) { utf8_bytes[0] = std::char_traits<char>::eof(); utf8_bytes_filled = 1; } else { // get the current character const auto wc = static_cast<unsigned int>(str[current_wchar++]); // UTF-32 to UTF-8 encoding if (wc < 0x80) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc); utf8_bytes_filled = 1; } else if (wc <= 0x7FF) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u) & 0x1Fu)); utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu)); utf8_bytes_filled = 2; } else if (wc <= 0xFFFF) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u) & 0x0Fu)); utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu)); utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu)); utf8_bytes_filled = 3; } else if (wc <= 0x10FFFF) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((wc >> 18u) & 0x07u)); utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 12u) & 0x3Fu)); utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu)); utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu)); utf8_bytes_filled = 4; } else { // unknown character utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc); utf8_bytes_filled = 1; } } } }; template<typename WideStringType> struct wide_string_input_helper<WideStringType, 2> { // UTF-16 static void fill_buffer(const WideStringType& str, size_t& current_wchar, std::array<std::char_traits<char>::int_type, 4>& utf8_bytes, size_t& utf8_bytes_index, size_t& utf8_bytes_filled) { utf8_bytes_index = 0; if (current_wchar == str.size()) { utf8_bytes[0] = std::char_traits<char>::eof(); utf8_bytes_filled = 1; } else { // get the current character const auto wc = static_cast<unsigned int>(str[current_wchar++]); // UTF-16 to UTF-8 encoding if (wc < 0x80) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc); utf8_bytes_filled = 1; } else if (wc <= 0x7FF) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((wc >> 6u))); utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu)); utf8_bytes_filled = 2; } else if (0xD800 > wc or wc >= 0xE000) { utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((wc >> 12u))); utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((wc >> 6u) & 0x3Fu)); utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (wc & 0x3Fu)); utf8_bytes_filled = 3; } else { if (current_wchar < str.size()) { const auto wc2 = static_cast<unsigned int>(str[current_wchar++]); const auto charcode = 0x10000u + (((wc & 0x3FFu) << 10u) | (wc2 & 0x3FFu)); utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u)); utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu)); utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu)); utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu)); utf8_bytes_filled = 4; } else { // unknown character ++current_wchar; utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc); utf8_bytes_filled = 1; } } } } }; template<typename WideStringType> class wide_string_input_adapter : public input_adapter_protocol { public: explicit wide_string_input_adapter(const WideStringType& w) noexcept : str(w) {} std::char_traits<char>::int_type get_character() noexcept override { // check if buffer needs to be filled if (utf8_bytes_index == utf8_bytes_filled) { fill_buffer<sizeof(typename WideStringType::value_type)>(); assert(utf8_bytes_filled > 0); assert(utf8_bytes_index == 0); } // use buffer assert(utf8_bytes_filled > 0); assert(utf8_bytes_index < utf8_bytes_filled); return utf8_bytes[utf8_bytes_index++]; } private: template<size_t T> void fill_buffer() { wide_string_input_helper<WideStringType, T>::fill_buffer(str, current_wchar, utf8_bytes, utf8_bytes_index, utf8_bytes_filled); } /// the wstring to process const WideStringType& str; /// index of the current wchar in str std::size_t current_wchar = 0; /// a buffer for UTF-8 bytes std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}}; /// index to the utf8_codes array for the next valid byte std::size_t utf8_bytes_index = 0; /// number of valid bytes in the utf8_codes array std::size_t utf8_bytes_filled = 0; }; class input_adapter { public: // native support input_adapter(std::FILE* file) : ia(std::make_shared<file_input_adapter>(file)) {} /// input adapter for input stream input_adapter(std::istream& i) : ia(std::make_shared<input_stream_adapter>(i)) {} /// input adapter for input stream input_adapter(std::istream&& i) : ia(std::make_shared<input_stream_adapter>(i)) {} input_adapter(const std::wstring& ws) : ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {} input_adapter(const std::u16string& ws) : ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {} input_adapter(const std::u32string& ws) : ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {} /// input adapter for buffer template<typename CharT, typename std::enable_if< std::is_pointer<CharT>::value and std::is_integral<typename std::remove_pointer<CharT>::type>::value and sizeof(typename std::remove_pointer<CharT>::type) == 1, int>::type = 0> input_adapter(CharT b, std::size_t l) : ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {} // derived support /// input adapter for string literal template<typename CharT, typename std::enable_if< std::is_pointer<CharT>::value and std::is_integral<typename std::remove_pointer<CharT>::type>::value and sizeof(typename std::remove_pointer<CharT>::type) == 1, int>::type = 0> input_adapter(CharT b) : input_adapter(reinterpret_cast<const char*>(b), std::strlen(reinterpret_cast<const char*>(b))) {} /// input adapter for iterator range with contiguous storage template<class IteratorType, typename std::enable_if< std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value, int>::type = 0> input_adapter(IteratorType first, IteratorType last) { #ifndef NDEBUG // assertion to check that the iterator range is indeed contiguous, // see http://stackoverflow.com/a/35008842/266378 for more discussion const auto is_contiguous = std::accumulate( first, last, std::pair<bool, int>(true, 0), [&first](std::pair<bool, int> res, decltype(*first) val) { res.first &= (val == *(std::next(std::addressof(*first), res.second++))); return res; }).first; assert(is_contiguous); #endif // assertion to check that each element is 1 byte long static_assert( sizeof(typename iterator_traits<IteratorType>::value_type) == 1, "each element in the iterator range must have the size of 1 byte"); const auto len = static_cast<size_t>(std::distance(first, last)); if (JSON_LIKELY(len > 0)) { // there is at least one element: use the address of first ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len); } else { // the address of first cannot be used: use nullptr ia = std::make_shared<input_buffer_adapter>(nullptr, len); } } /// input adapter for array template<class T, std::size_t N> input_adapter(T (&array)[N]) : input_adapter(std::begin(array), std::end(array)) {} /// input adapter for contiguous container template<class ContiguousContainer, typename std::enable_if<not std::is_pointer<ContiguousContainer>::value and std::is_base_of<std::random_access_iterator_tag, typename iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value, int>::type = 0> input_adapter(const ContiguousContainer& c) : input_adapter(std::begin(c), std::end(c)) {} operator input_adapter_t() { return ia; } private: /// the actual adapter input_adapter_t ia = nullptr; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/input/json_sax.hpp> #include <cassert> // assert #include <cstddef> #include <string> // string #include <utility> // move #include <vector> // vector // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/macro_scope.hpp> namespace nlohmann { /*! @brief SAX interface This class describes the SAX interface used by @ref nlohmann::json::sax_parse. Each function is called in different situations while the input is parsed. The boolean return value informs the parser whether to continue processing the input. */ template<typename BasicJsonType> struct json_sax { /// type for (signed) integers using number_integer_t = typename BasicJsonType::number_integer_t; /// type for unsigned integers using number_unsigned_t = typename BasicJsonType::number_unsigned_t; /// type for floating-point numbers using number_float_t = typename BasicJsonType::number_float_t; /// type for strings using string_t = typename BasicJsonType::string_t; /*! @brief a null value was read @return whether parsing should proceed */ virtual bool null() = 0; /*! @brief a boolean value was read @param[in] val boolean value @return whether parsing should proceed */ virtual bool boolean(bool val) = 0; /*! @brief an integer number was read @param[in] val integer value @return whether parsing should proceed */ virtual bool number_integer(number_integer_t val) = 0; /*! @brief an unsigned integer number was read @param[in] val unsigned integer value @return whether parsing should proceed */ virtual bool number_unsigned(number_unsigned_t val) = 0; /*! @brief an floating-point number was read @param[in] val floating-point value @param[in] s raw token value @return whether parsing should proceed */ virtual bool number_float(number_float_t val, const string_t& s) = 0; /*! @brief a string was read @param[in] val string value @return whether parsing should proceed @note It is safe to move the passed string. */ virtual bool string(string_t& val) = 0; /*! @brief the beginning of an object was read @param[in] elements number of object elements or -1 if unknown @return whether parsing should proceed @note binary formats may report the number of elements */ virtual bool start_object(std::size_t elements) = 0; /*! @brief an object key was read @param[in] val object key @return whether parsing should proceed @note It is safe to move the passed string. */ virtual bool key(string_t& val) = 0; /*! @brief the end of an object was read @return whether parsing should proceed */ virtual bool end_object() = 0; /*! @brief the beginning of an array was read @param[in] elements number of array elements or -1 if unknown @return whether parsing should proceed @note binary formats may report the number of elements */ virtual bool start_array(std::size_t elements) = 0; /*! @brief the end of an array was read @return whether parsing should proceed */ virtual bool end_array() = 0; /*! @brief a parse error occurred @param[in] position the position in the input where the error occurs @param[in] last_token the last read token @param[in] ex an exception object describing the error @return whether parsing should proceed (must return false) */ virtual bool parse_error(std::size_t position, const std::string& last_token, const detail::exception& ex) = 0; virtual ~json_sax() = default; }; namespace detail { /*! @brief SAX implementation to create a JSON value from SAX events This class implements the @ref json_sax interface and processes the SAX events to create a JSON value which makes it basically a DOM parser. The structure or hierarchy of the JSON value is managed by the stack `ref_stack` which contains a pointer to the respective array or object for each recursion depth. After successful parsing, the value that is passed by reference to the constructor contains the parsed value. @tparam BasicJsonType the JSON type */ template<typename BasicJsonType> class json_sax_dom_parser { public: using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; /*! @param[in, out] r reference to a JSON value that is manipulated while parsing @param[in] allow_exceptions_ whether parse errors yield exceptions */ explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true) : root(r), allow_exceptions(allow_exceptions_) {} // make class move-only json_sax_dom_parser(const json_sax_dom_parser&) = delete; json_sax_dom_parser(json_sax_dom_parser&&) = default; json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete; json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; ~json_sax_dom_parser() = default; bool null() { handle_value(nullptr); return true; } bool boolean(bool val) { handle_value(val); return true; } bool number_integer(number_integer_t val) { handle_value(val); return true; } bool number_unsigned(number_unsigned_t val) { handle_value(val); return true; } bool number_float(number_float_t val, const string_t& /*unused*/) { handle_value(val); return true; } bool string(string_t& val) { handle_value(val); return true; } bool start_object(std::size_t len) { ref_stack.push_back(handle_value(BasicJsonType::value_t::object)); if (JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size())) { JSON_THROW(out_of_range::create(408, "excessive object size: " + std::to_string(len))); } return true; } bool key(string_t& val) { // add null at given key and store the reference for later object_element = &(ref_stack.back()->m_value.object->operator[](val)); return true; } bool end_object() { ref_stack.pop_back(); return true; } bool start_array(std::size_t len) { ref_stack.push_back(handle_value(BasicJsonType::value_t::array)); if (JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size())) { JSON_THROW(out_of_range::create(408, "excessive array size: " + std::to_string(len))); } return true; } bool end_array() { ref_stack.pop_back(); return true; } bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& ex) { errored = true; if (allow_exceptions) { // determine the proper exception type from the id switch ((ex.id / 100) % 100) { case 1: JSON_THROW(*static_cast<const detail::parse_error*>(&ex)); case 4: JSON_THROW(*static_cast<const detail::out_of_range*>(&ex)); // LCOV_EXCL_START case 2: JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex)); case 3: JSON_THROW(*static_cast<const detail::type_error*>(&ex)); case 5: JSON_THROW(*static_cast<const detail::other_error*>(&ex)); default: assert(false); // LCOV_EXCL_STOP } } return false; } constexpr bool is_errored() const { return errored; } private: /*! @invariant If the ref stack is empty, then the passed value will be the new root. @invariant If the ref stack contains a value, then it is an array or an object to which we can add elements */ template<typename Value> BasicJsonType* handle_value(Value&& v) { if (ref_stack.empty()) { root = BasicJsonType(std::forward<Value>(v)); return &root; } assert(ref_stack.back()->is_array() or ref_stack.back()->is_object()); if (ref_stack.back()->is_array()) { ref_stack.back()->m_value.array->emplace_back(std::forward<Value>(v)); return &(ref_stack.back()->m_value.array->back()); } assert(ref_stack.back()->is_object()); assert(object_element); *object_element = BasicJsonType(std::forward<Value>(v)); return object_element; } /// the parsed JSON value BasicJsonType& root; /// stack to model hierarchy of values std::vector<BasicJsonType*> ref_stack {}; /// helper to hold the reference for the next object element BasicJsonType* object_element = nullptr; /// whether a syntax error occurred bool errored = false; /// whether to throw exceptions in case of errors const bool allow_exceptions = true; }; template<typename BasicJsonType> class json_sax_dom_callback_parser { public: using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using parser_callback_t = typename BasicJsonType::parser_callback_t; using parse_event_t = typename BasicJsonType::parse_event_t; json_sax_dom_callback_parser(BasicJsonType& r, const parser_callback_t cb, const bool allow_exceptions_ = true) : root(r), callback(cb), allow_exceptions(allow_exceptions_) { keep_stack.push_back(true); } // make class move-only json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete; json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete; json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; ~json_sax_dom_callback_parser() = default; bool null() { handle_value(nullptr); return true; } bool boolean(bool val) { handle_value(val); return true; } bool number_integer(number_integer_t val) { handle_value(val); return true; } bool number_unsigned(number_unsigned_t val) { handle_value(val); return true; } bool number_float(number_float_t val, const string_t& /*unused*/) { handle_value(val); return true; } bool string(string_t& val) { handle_value(val); return true; } bool start_object(std::size_t len) { // check callback for object start const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded); keep_stack.push_back(keep); auto val = handle_value(BasicJsonType::value_t::object, true); ref_stack.push_back(val.second); // check object limit if (ref_stack.back() and JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size())) { JSON_THROW(out_of_range::create(408, "excessive object size: " + std::to_string(len))); } return true; } bool key(string_t& val) { BasicJsonType k = BasicJsonType(val); // check callback for key const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k); key_keep_stack.push_back(keep); // add discarded value at given key and store the reference for later if (keep and ref_stack.back()) { object_element = &(ref_stack.back()->m_value.object->operator[](val) = discarded); } return true; } bool end_object() { if (ref_stack.back() and not callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back())) { // discard object *ref_stack.back() = discarded; } assert(not ref_stack.empty()); assert(not keep_stack.empty()); ref_stack.pop_back(); keep_stack.pop_back(); if (not ref_stack.empty() and ref_stack.back() and ref_stack.back()->is_object()) { // remove discarded value for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it) { if (it->is_discarded()) { ref_stack.back()->erase(it); break; } } } return true; } bool start_array(std::size_t len) { const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded); keep_stack.push_back(keep); auto val = handle_value(BasicJsonType::value_t::array, true); ref_stack.push_back(val.second); // check array limit if (ref_stack.back() and JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size())) { JSON_THROW(out_of_range::create(408, "excessive array size: " + std::to_string(len))); } return true; } bool end_array() { bool keep = true; if (ref_stack.back()) { keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back()); if (not keep) { // discard array *ref_stack.back() = discarded; } } assert(not ref_stack.empty()); assert(not keep_stack.empty()); ref_stack.pop_back(); keep_stack.pop_back(); // remove discarded value if (not keep and not ref_stack.empty() and ref_stack.back()->is_array()) { ref_stack.back()->m_value.array->pop_back(); } return true; } bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& ex) { errored = true; if (allow_exceptions) { // determine the proper exception type from the id switch ((ex.id / 100) % 100) { case 1: JSON_THROW(*static_cast<const detail::parse_error*>(&ex)); case 4: JSON_THROW(*static_cast<const detail::out_of_range*>(&ex)); // LCOV_EXCL_START case 2: JSON_THROW(*static_cast<const detail::invalid_iterator*>(&ex)); case 3: JSON_THROW(*static_cast<const detail::type_error*>(&ex)); case 5: JSON_THROW(*static_cast<const detail::other_error*>(&ex)); default: assert(false); // LCOV_EXCL_STOP } } return false; } constexpr bool is_errored() const { return errored; } private: /*! @param[in] v value to add to the JSON value we build during parsing @param[in] skip_callback whether we should skip calling the callback function; this is required after start_array() and start_object() SAX events, because otherwise we would call the callback function with an empty array or object, respectively. @invariant If the ref stack is empty, then the passed value will be the new root. @invariant If the ref stack contains a value, then it is an array or an object to which we can add elements @return pair of boolean (whether value should be kept) and pointer (to the passed value in the ref_stack hierarchy; nullptr if not kept) */ template<typename Value> std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false) { assert(not keep_stack.empty()); // do not handle this value if we know it would be added to a discarded // container if (not keep_stack.back()) { return {false, nullptr}; } // create value auto value = BasicJsonType(std::forward<Value>(v)); // check callback const bool keep = skip_callback or callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value); // do not handle this value if we just learnt it shall be discarded if (not keep) { return {false, nullptr}; } if (ref_stack.empty()) { root = std::move(value); return {true, &root}; } // skip this value if we already decided to skip the parent // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360) if (not ref_stack.back()) { return {false, nullptr}; } // we now only expect arrays and objects assert(ref_stack.back()->is_array() or ref_stack.back()->is_object()); // array if (ref_stack.back()->is_array()) { ref_stack.back()->m_value.array->push_back(std::move(value)); return {true, &(ref_stack.back()->m_value.array->back())}; } // object assert(ref_stack.back()->is_object()); // check if we should store an element for the current key assert(not key_keep_stack.empty()); const bool store_element = key_keep_stack.back(); key_keep_stack.pop_back(); if (not store_element) { return {false, nullptr}; } assert(object_element); *object_element = std::move(value); return {true, object_element}; } /// the parsed JSON value BasicJsonType& root; /// stack to model hierarchy of values std::vector<BasicJsonType*> ref_stack {}; /// stack to manage which values to keep std::vector<bool> keep_stack {}; /// stack to manage which object keys to keep std::vector<bool> key_keep_stack {}; /// helper to hold the reference for the next object element BasicJsonType* object_element = nullptr; /// whether a syntax error occurred bool errored = false; /// callback function const parser_callback_t callback = nullptr; /// whether to throw exceptions in case of errors const bool allow_exceptions = true; /// a discarded value for the callback BasicJsonType discarded = BasicJsonType::value_t::discarded; }; template<typename BasicJsonType> class json_sax_acceptor { public: using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; bool null() { return true; } bool boolean(bool /*unused*/) { return true; } bool number_integer(number_integer_t /*unused*/) { return true; } bool number_unsigned(number_unsigned_t /*unused*/) { return true; } bool number_float(number_float_t /*unused*/, const string_t& /*unused*/) { return true; } bool string(string_t& /*unused*/) { return true; } bool start_object(std::size_t /*unused*/ = std::size_t(-1)) { return true; } bool key(string_t& /*unused*/) { return true; } bool end_object() { return true; } bool start_array(std::size_t /*unused*/ = std::size_t(-1)) { return true; } bool end_array() { return true; } bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/) { return false; } }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/meta/is_sax.hpp> #include <cstdint> // size_t #include <utility> // declval #include <string> // string // #include <nlohmann/detail/meta/detected.hpp> // #include <nlohmann/detail/meta/type_traits.hpp> namespace nlohmann { namespace detail { template <typename T> using null_function_t = decltype(std::declval<T&>().null()); template <typename T> using boolean_function_t = decltype(std::declval<T&>().boolean(std::declval<bool>())); template <typename T, typename Integer> using number_integer_function_t = decltype(std::declval<T&>().number_integer(std::declval<Integer>())); template <typename T, typename Unsigned> using number_unsigned_function_t = decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>())); template <typename T, typename Float, typename String> using number_float_function_t = decltype(std::declval<T&>().number_float( std::declval<Float>(), std::declval<const String&>())); template <typename T, typename String> using string_function_t = decltype(std::declval<T&>().string(std::declval<String&>())); template <typename T> using start_object_function_t = decltype(std::declval<T&>().start_object(std::declval<std::size_t>())); template <typename T, typename String> using key_function_t = decltype(std::declval<T&>().key(std::declval<String&>())); template <typename T> using end_object_function_t = decltype(std::declval<T&>().end_object()); template <typename T> using start_array_function_t = decltype(std::declval<T&>().start_array(std::declval<std::size_t>())); template <typename T> using end_array_function_t = decltype(std::declval<T&>().end_array()); template <typename T, typename Exception> using parse_error_function_t = decltype(std::declval<T&>().parse_error( std::declval<std::size_t>(), std::declval<const std::string&>(), std::declval<const Exception&>())); template <typename SAX, typename BasicJsonType> struct is_sax { private: static_assert(is_basic_json<BasicJsonType>::value, "BasicJsonType must be of type basic_json<...>"); using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using exception_t = typename BasicJsonType::exception; public: static constexpr bool value = is_detected_exact<bool, null_function_t, SAX>::value && is_detected_exact<bool, boolean_function_t, SAX>::value && is_detected_exact<bool, number_integer_function_t, SAX, number_integer_t>::value && is_detected_exact<bool, number_unsigned_function_t, SAX, number_unsigned_t>::value && is_detected_exact<bool, number_float_function_t, SAX, number_float_t, string_t>::value && is_detected_exact<bool, string_function_t, SAX, string_t>::value && is_detected_exact<bool, start_object_function_t, SAX>::value && is_detected_exact<bool, key_function_t, SAX, string_t>::value && is_detected_exact<bool, end_object_function_t, SAX>::value && is_detected_exact<bool, start_array_function_t, SAX>::value && is_detected_exact<bool, end_array_function_t, SAX>::value && is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value; }; template <typename SAX, typename BasicJsonType> struct is_sax_static_asserts { private: static_assert(is_basic_json<BasicJsonType>::value, "BasicJsonType must be of type basic_json<...>"); using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using exception_t = typename BasicJsonType::exception; public: static_assert(is_detected_exact<bool, null_function_t, SAX>::value, "Missing/invalid function: bool null()"); static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value, "Missing/invalid function: bool boolean(bool)"); static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value, "Missing/invalid function: bool boolean(bool)"); static_assert( is_detected_exact<bool, number_integer_function_t, SAX, number_integer_t>::value, "Missing/invalid function: bool number_integer(number_integer_t)"); static_assert( is_detected_exact<bool, number_unsigned_function_t, SAX, number_unsigned_t>::value, "Missing/invalid function: bool number_unsigned(number_unsigned_t)"); static_assert(is_detected_exact<bool, number_float_function_t, SAX, number_float_t, string_t>::value, "Missing/invalid function: bool number_float(number_float_t, const string_t&)"); static_assert( is_detected_exact<bool, string_function_t, SAX, string_t>::value, "Missing/invalid function: bool string(string_t&)"); static_assert(is_detected_exact<bool, start_object_function_t, SAX>::value, "Missing/invalid function: bool start_object(std::size_t)"); static_assert(is_detected_exact<bool, key_function_t, SAX, string_t>::value, "Missing/invalid function: bool key(string_t&)"); static_assert(is_detected_exact<bool, end_object_function_t, SAX>::value, "Missing/invalid function: bool end_object()"); static_assert(is_detected_exact<bool, start_array_function_t, SAX>::value, "Missing/invalid function: bool start_array(std::size_t)"); static_assert(is_detected_exact<bool, end_array_function_t, SAX>::value, "Missing/invalid function: bool end_array()"); static_assert( is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value, "Missing/invalid function: bool parse_error(std::size_t, const " "std::string&, const exception&)"); }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { namespace detail { /////////////////// // binary reader // /////////////////// /*! @brief deserialization of CBOR, MessagePack, and UBJSON values */ template<typename BasicJsonType, typename SAX = json_sax_dom_parser<BasicJsonType>> class binary_reader { using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using json_sax_t = SAX; public: /*! @brief create a binary reader @param[in] adapter input adapter to read from */ explicit binary_reader(input_adapter_t adapter) : ia(std::move(adapter)) { (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {}; assert(ia); } // make class move-only binary_reader(const binary_reader&) = delete; binary_reader(binary_reader&&) = default; binary_reader& operator=(const binary_reader&) = delete; binary_reader& operator=(binary_reader&&) = default; ~binary_reader() = default; /*! @param[in] format the binary format to parse @param[in] sax_ a SAX event processor @param[in] strict whether to expect the input to be consumed completed @return */ bool sax_parse(const input_format_t format, json_sax_t* sax_, const bool strict = true) { sax = sax_; bool result = false; switch (format) { case input_format_t::bson: result = parse_bson_internal(); break; case input_format_t::cbor: result = parse_cbor_internal(); break; case input_format_t::msgpack: result = parse_msgpack_internal(); break; case input_format_t::ubjson: result = parse_ubjson_internal(); break; default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } // strict mode: next byte must be EOF if (result and strict) { if (format == input_format_t::ubjson) { get_ignore_noop(); } else { get(); } if (JSON_UNLIKELY(current != std::char_traits<char>::eof())) { return sax->parse_error(chars_read, get_token_string(), parse_error::create(110, chars_read, exception_message(format, "expected end of input; last byte: 0x" + get_token_string(), "value"))); } } return result; } /*! @brief determine system byte order @return true if and only if system's byte order is little endian @note from http://stackoverflow.com/a/1001328/266378 */ static constexpr bool little_endianess(int num = 1) noexcept { return *reinterpret_cast<char*>(&num) == 1; } private: ////////// // BSON // ////////// /*! @brief Reads in a BSON-object and passes it to the SAX-parser. @return whether a valid BSON-value was passed to the SAX parser */ bool parse_bson_internal() { std::int32_t document_size; get_number<std::int32_t, true>(input_format_t::bson, document_size); if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1)))) { return false; } if (JSON_UNLIKELY(not parse_bson_element_list(/*is_array*/false))) { return false; } return sax->end_object(); } /*! @brief Parses a C-style string from the BSON input. @param[in, out] result A reference to the string variable where the read string is to be stored. @return `true` if the \x00-byte indicating the end of the string was encountered before the EOF; false` indicates an unexpected EOF. */ bool get_bson_cstr(string_t& result) { auto out = std::back_inserter(result); while (true) { get(); if (JSON_UNLIKELY(not unexpect_eof(input_format_t::bson, "cstring"))) { return false; } if (current == 0x00) { return true; } *out++ = static_cast<char>(current); } return true; } /*! @brief Parses a zero-terminated string of length @a len from the BSON input. @param[in] len The length (including the zero-byte at the end) of the string to be read. @param[in, out] result A reference to the string variable where the read string is to be stored. @tparam NumberType The type of the length @a len @pre len >= 1 @return `true` if the string was successfully parsed */ template<typename NumberType> bool get_bson_string(const NumberType len, string_t& result) { if (JSON_UNLIKELY(len < 1)) { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::bson, "string length must be at least 1, is " + std::to_string(len), "string"))); } return get_string(input_format_t::bson, len - static_cast<NumberType>(1), result) and get() != std::char_traits<char>::eof(); } /*! @brief Read a BSON document element of the given @a element_type. @param[in] element_type The BSON element type, c.f. http://bsonspec.org/spec.html @param[in] element_type_parse_position The position in the input stream, where the `element_type` was read. @warning Not all BSON element types are supported yet. An unsupported @a element_type will give rise to a parse_error.114: Unsupported BSON record type 0x... @return whether a valid BSON-object/array was passed to the SAX parser */ bool parse_bson_element_internal(const int element_type, const std::size_t element_type_parse_position) { switch (element_type) { case 0x01: // double { double number; return get_number<double, true>(input_format_t::bson, number) and sax->number_float(static_cast<number_float_t>(number), ""); } case 0x02: // string { std::int32_t len; string_t value; return get_number<std::int32_t, true>(input_format_t::bson, len) and get_bson_string(len, value) and sax->string(value); } case 0x03: // object { return parse_bson_internal(); } case 0x04: // array { return parse_bson_array(); } case 0x08: // boolean { return sax->boolean(get() != 0); } case 0x0A: // null { return sax->null(); } case 0x10: // int32 { std::int32_t value; return get_number<std::int32_t, true>(input_format_t::bson, value) and sax->number_integer(value); } case 0x12: // int64 { std::int64_t value; return get_number<std::int64_t, true>(input_format_t::bson, value) and sax->number_integer(value); } default: // anything else not supported (yet) { std::array<char, 3> cr{{}}; (std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(element_type)); return sax->parse_error(element_type_parse_position, std::string(cr.data()), parse_error::create(114, element_type_parse_position, "Unsupported BSON record type 0x" + std::string(cr.data()))); } } } /*! @brief Read a BSON element list (as specified in the BSON-spec) The same binary layout is used for objects and arrays, hence it must be indicated with the argument @a is_array which one is expected (true --> array, false --> object). @param[in] is_array Determines if the element list being read is to be treated as an object (@a is_array == false), or as an array (@a is_array == true). @return whether a valid BSON-object/array was passed to the SAX parser */ bool parse_bson_element_list(const bool is_array) { string_t key; while (int element_type = get()) { if (JSON_UNLIKELY(not unexpect_eof(input_format_t::bson, "element list"))) { return false; } const std::size_t element_type_parse_position = chars_read; if (JSON_UNLIKELY(not get_bson_cstr(key))) { return false; } if (not is_array and not sax->key(key)) { return false; } if (JSON_UNLIKELY(not parse_bson_element_internal(element_type, element_type_parse_position))) { return false; } // get_bson_cstr only appends key.clear(); } return true; } /*! @brief Reads an array from the BSON input and passes it to the SAX-parser. @return whether a valid BSON-array was passed to the SAX parser */ bool parse_bson_array() { std::int32_t document_size; get_number<std::int32_t, true>(input_format_t::bson, document_size); if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1)))) { return false; } if (JSON_UNLIKELY(not parse_bson_element_list(/*is_array*/true))) { return false; } return sax->end_array(); } ////////// // CBOR // ////////// /*! @param[in] get_char whether a new character should be retrieved from the input (true, default) or whether the last read character should be considered instead @return whether a valid CBOR value was passed to the SAX parser */ bool parse_cbor_internal(const bool get_char = true) { switch (get_char ? get() : current) { // EOF case std::char_traits<char>::eof(): return unexpect_eof(input_format_t::cbor, "value"); // Integer 0x00..0x17 (0..23) case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0A: case 0x0B: case 0x0C: case 0x0D: case 0x0E: case 0x0F: case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: return sax->number_unsigned(static_cast<number_unsigned_t>(current)); case 0x18: // Unsigned integer (one-byte uint8_t follows) { std::uint8_t number; return get_number(input_format_t::cbor, number) and sax->number_unsigned(number); } case 0x19: // Unsigned integer (two-byte uint16_t follows) { std::uint16_t number; return get_number(input_format_t::cbor, number) and sax->number_unsigned(number); } case 0x1A: // Unsigned integer (four-byte uint32_t follows) { std::uint32_t number; return get_number(input_format_t::cbor, number) and sax->number_unsigned(number); } case 0x1B: // Unsigned integer (eight-byte uint64_t follows) { std::uint64_t number; return get_number(input_format_t::cbor, number) and sax->number_unsigned(number); } // Negative integer -1-0x00..-1-0x17 (-1..-24) case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2A: case 0x2B: case 0x2C: case 0x2D: case 0x2E: case 0x2F: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: return sax->number_integer(static_cast<std::int8_t>(0x20 - 1 - current)); case 0x38: // Negative integer (one-byte uint8_t follows) { std::uint8_t number; return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number); } case 0x39: // Negative integer -1-n (two-byte uint16_t follows) { std::uint16_t number; return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number); } case 0x3A: // Negative integer -1-n (four-byte uint32_t follows) { std::uint32_t number; return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number); } case 0x3B: // Negative integer -1-n (eight-byte uint64_t follows) { std::uint64_t number; return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - static_cast<number_integer_t>(number)); } // UTF-8 string (0x00..0x17 bytes follow) case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: // UTF-8 string (one-byte uint8_t for n follows) case 0x79: // UTF-8 string (two-byte uint16_t for n follow) case 0x7A: // UTF-8 string (four-byte uint32_t for n follow) case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow) case 0x7F: // UTF-8 string (indefinite length) { string_t s; return get_cbor_string(s) and sax->string(s); } // array (0x00..0x17 data items follow) case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8A: case 0x8B: case 0x8C: case 0x8D: case 0x8E: case 0x8F: case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: return get_cbor_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu)); case 0x98: // array (one-byte uint8_t for n follows) { std::uint8_t len; return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len)); } case 0x99: // array (two-byte uint16_t for n follow) { std::uint16_t len; return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len)); } case 0x9A: // array (four-byte uint32_t for n follow) { std::uint32_t len; return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len)); } case 0x9B: // array (eight-byte uint64_t for n follow) { std::uint64_t len; return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len)); } case 0x9F: // array (indefinite length) return get_cbor_array(std::size_t(-1)); // map (0x00..0x17 pairs of data items follow) case 0xA0: case 0xA1: case 0xA2: case 0xA3: case 0xA4: case 0xA5: case 0xA6: case 0xA7: case 0xA8: case 0xA9: case 0xAA: case 0xAB: case 0xAC: case 0xAD: case 0xAE: case 0xAF: case 0xB0: case 0xB1: case 0xB2: case 0xB3: case 0xB4: case 0xB5: case 0xB6: case 0xB7: return get_cbor_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu)); case 0xB8: // map (one-byte uint8_t for n follows) { std::uint8_t len; return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len)); } case 0xB9: // map (two-byte uint16_t for n follow) { std::uint16_t len; return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len)); } case 0xBA: // map (four-byte uint32_t for n follow) { std::uint32_t len; return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len)); } case 0xBB: // map (eight-byte uint64_t for n follow) { std::uint64_t len; return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len)); } case 0xBF: // map (indefinite length) return get_cbor_object(std::size_t(-1)); case 0xF4: // false return sax->boolean(false); case 0xF5: // true return sax->boolean(true); case 0xF6: // null return sax->null(); case 0xF9: // Half-Precision Float (two-byte IEEE 754) { const int byte1_raw = get(); if (JSON_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number"))) { return false; } const int byte2_raw = get(); if (JSON_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number"))) { return false; } const auto byte1 = static_cast<unsigned char>(byte1_raw); const auto byte2 = static_cast<unsigned char>(byte2_raw); // code from RFC 7049, Appendix D, Figure 3: // As half-precision floating-point numbers were only added // to IEEE 754 in 2008, today's programming platforms often // still only have limited support for them. It is very // easy to include at least decoding support for them even // without such support. An example of a small decoder for // half-precision floating-point numbers in the C language // is shown in Fig. 3. const auto half = static_cast<unsigned int>((byte1 << 8u) + byte2); const double val = [&half] { const int exp = (half >> 10u) & 0x1Fu; const unsigned int mant = half & 0x3FFu; assert(0 <= exp and exp <= 32); assert(0 <= mant and mant <= 1024); switch (exp) { case 0: return std::ldexp(mant, -24); case 31: return (mant == 0) ? std::numeric_limits<double>::infinity() : std::numeric_limits<double>::quiet_NaN(); default: return std::ldexp(mant + 1024, exp - 25); } }(); return sax->number_float((half & 0x8000u) != 0 ? static_cast<number_float_t>(-val) : static_cast<number_float_t>(val), ""); } case 0xFA: // Single-Precision Float (four-byte IEEE 754) { float number; return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), ""); } case 0xFB: // Double-Precision Float (eight-byte IEEE 754) { double number; return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), ""); } default: // anything else (0xFF is handled inside the other types) { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::cbor, "invalid byte: 0x" + last_token, "value"))); } } } /*! @brief reads a CBOR string This function first reads starting bytes to determine the expected string length and then copies this number of bytes into a string. Additionally, CBOR's strings with indefinite lengths are supported. @param[out] result created string @return whether string creation completed */ bool get_cbor_string(string_t& result) { if (JSON_UNLIKELY(not unexpect_eof(input_format_t::cbor, "string"))) { return false; } switch (current) { // UTF-8 string (0x00..0x17 bytes follow) case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: { return get_string(input_format_t::cbor, static_cast<unsigned int>(current) & 0x1Fu, result); } case 0x78: // UTF-8 string (one-byte uint8_t for n follows) { std::uint8_t len; return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result); } case 0x79: // UTF-8 string (two-byte uint16_t for n follow) { std::uint16_t len; return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result); } case 0x7A: // UTF-8 string (four-byte uint32_t for n follow) { std::uint32_t len; return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result); } case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow) { std::uint64_t len; return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result); } case 0x7F: // UTF-8 string (indefinite length) { while (get() != 0xFF) { string_t chunk; if (not get_cbor_string(chunk)) { return false; } result.append(chunk); } return true; } default: { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::cbor, "expected length specification (0x60-0x7B) or indefinite string type (0x7F); last byte: 0x" + last_token, "string"))); } } } /*! @param[in] len the length of the array or std::size_t(-1) for an array of indefinite size @return whether array creation completed */ bool get_cbor_array(const std::size_t len) { if (JSON_UNLIKELY(not sax->start_array(len))) { return false; } if (len != std::size_t(-1)) { for (std::size_t i = 0; i < len; ++i) { if (JSON_UNLIKELY(not parse_cbor_internal())) { return false; } } } else { while (get() != 0xFF) { if (JSON_UNLIKELY(not parse_cbor_internal(false))) { return false; } } } return sax->end_array(); } /*! @param[in] len the length of the object or std::size_t(-1) for an object of indefinite size @return whether object creation completed */ bool get_cbor_object(const std::size_t len) { if (JSON_UNLIKELY(not sax->start_object(len))) { return false; } string_t key; if (len != std::size_t(-1)) { for (std::size_t i = 0; i < len; ++i) { get(); if (JSON_UNLIKELY(not get_cbor_string(key) or not sax->key(key))) { return false; } if (JSON_UNLIKELY(not parse_cbor_internal())) { return false; } key.clear(); } } else { while (get() != 0xFF) { if (JSON_UNLIKELY(not get_cbor_string(key) or not sax->key(key))) { return false; } if (JSON_UNLIKELY(not parse_cbor_internal())) { return false; } key.clear(); } } return sax->end_object(); } ///////////// // MsgPack // ///////////// /*! @return whether a valid MessagePack value was passed to the SAX parser */ bool parse_msgpack_internal() { switch (get()) { // EOF case std::char_traits<char>::eof(): return unexpect_eof(input_format_t::msgpack, "value"); // positive fixint case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0A: case 0x0B: case 0x0C: case 0x0D: case 0x0E: case 0x0F: case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1A: case 0x1B: case 0x1C: case 0x1D: case 0x1E: case 0x1F: case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2A: case 0x2B: case 0x2C: case 0x2D: case 0x2E: case 0x2F: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4A: case 0x4B: case 0x4C: case 0x4D: case 0x4E: case 0x4F: case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x58: case 0x59: case 0x5A: case 0x5B: case 0x5C: case 0x5D: case 0x5E: case 0x5F: case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7A: case 0x7B: case 0x7C: case 0x7D: case 0x7E: case 0x7F: return sax->number_unsigned(static_cast<number_unsigned_t>(current)); // fixmap case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8A: case 0x8B: case 0x8C: case 0x8D: case 0x8E: case 0x8F: return get_msgpack_object(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu)); // fixarray case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9A: case 0x9B: case 0x9C: case 0x9D: case 0x9E: case 0x9F: return get_msgpack_array(static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu)); // fixstr case 0xA0: case 0xA1: case 0xA2: case 0xA3: case 0xA4: case 0xA5: case 0xA6: case 0xA7: case 0xA8: case 0xA9: case 0xAA: case 0xAB: case 0xAC: case 0xAD: case 0xAE: case 0xAF: case 0xB0: case 0xB1: case 0xB2: case 0xB3: case 0xB4: case 0xB5: case 0xB6: case 0xB7: case 0xB8: case 0xB9: case 0xBA: case 0xBB: case 0xBC: case 0xBD: case 0xBE: case 0xBF: { string_t s; return get_msgpack_string(s) and sax->string(s); } case 0xC0: // nil return sax->null(); case 0xC2: // false return sax->boolean(false); case 0xC3: // true return sax->boolean(true); case 0xCA: // float 32 { float number; return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), ""); } case 0xCB: // float 64 { double number; return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), ""); } case 0xCC: // uint 8 { std::uint8_t number; return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number); } case 0xCD: // uint 16 { std::uint16_t number; return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number); } case 0xCE: // uint 32 { std::uint32_t number; return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number); } case 0xCF: // uint 64 { std::uint64_t number; return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number); } case 0xD0: // int 8 { std::int8_t number; return get_number(input_format_t::msgpack, number) and sax->number_integer(number); } case 0xD1: // int 16 { std::int16_t number; return get_number(input_format_t::msgpack, number) and sax->number_integer(number); } case 0xD2: // int 32 { std::int32_t number; return get_number(input_format_t::msgpack, number) and sax->number_integer(number); } case 0xD3: // int 64 { std::int64_t number; return get_number(input_format_t::msgpack, number) and sax->number_integer(number); } case 0xD9: // str 8 case 0xDA: // str 16 case 0xDB: // str 32 { string_t s; return get_msgpack_string(s) and sax->string(s); } case 0xDC: // array 16 { std::uint16_t len; return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len)); } case 0xDD: // array 32 { std::uint32_t len; return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len)); } case 0xDE: // map 16 { std::uint16_t len; return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len)); } case 0xDF: // map 32 { std::uint32_t len; return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len)); } // negative fixint case 0xE0: case 0xE1: case 0xE2: case 0xE3: case 0xE4: case 0xE5: case 0xE6: case 0xE7: case 0xE8: case 0xE9: case 0xEA: case 0xEB: case 0xEC: case 0xED: case 0xEE: case 0xEF: case 0xF0: case 0xF1: case 0xF2: case 0xF3: case 0xF4: case 0xF5: case 0xF6: case 0xF7: case 0xF8: case 0xF9: case 0xFA: case 0xFB: case 0xFC: case 0xFD: case 0xFE: case 0xFF: return sax->number_integer(static_cast<std::int8_t>(current)); default: // anything else { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::msgpack, "invalid byte: 0x" + last_token, "value"))); } } } /*! @brief reads a MessagePack string This function first reads starting bytes to determine the expected string length and then copies this number of bytes into a string. @param[out] result created string @return whether string creation completed */ bool get_msgpack_string(string_t& result) { if (JSON_UNLIKELY(not unexpect_eof(input_format_t::msgpack, "string"))) { return false; } switch (current) { // fixstr case 0xA0: case 0xA1: case 0xA2: case 0xA3: case 0xA4: case 0xA5: case 0xA6: case 0xA7: case 0xA8: case 0xA9: case 0xAA: case 0xAB: case 0xAC: case 0xAD: case 0xAE: case 0xAF: case 0xB0: case 0xB1: case 0xB2: case 0xB3: case 0xB4: case 0xB5: case 0xB6: case 0xB7: case 0xB8: case 0xB9: case 0xBA: case 0xBB: case 0xBC: case 0xBD: case 0xBE: case 0xBF: { return get_string(input_format_t::msgpack, static_cast<unsigned int>(current) & 0x1Fu, result); } case 0xD9: // str 8 { std::uint8_t len; return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result); } case 0xDA: // str 16 { std::uint16_t len; return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result); } case 0xDB: // str 32 { std::uint32_t len; return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result); } default: { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::msgpack, "expected length specification (0xA0-0xBF, 0xD9-0xDB); last byte: 0x" + last_token, "string"))); } } } /*! @param[in] len the length of the array @return whether array creation completed */ bool get_msgpack_array(const std::size_t len) { if (JSON_UNLIKELY(not sax->start_array(len))) { return false; } for (std::size_t i = 0; i < len; ++i) { if (JSON_UNLIKELY(not parse_msgpack_internal())) { return false; } } return sax->end_array(); } /*! @param[in] len the length of the object @return whether object creation completed */ bool get_msgpack_object(const std::size_t len) { if (JSON_UNLIKELY(not sax->start_object(len))) { return false; } string_t key; for (std::size_t i = 0; i < len; ++i) { get(); if (JSON_UNLIKELY(not get_msgpack_string(key) or not sax->key(key))) { return false; } if (JSON_UNLIKELY(not parse_msgpack_internal())) { return false; } key.clear(); } return sax->end_object(); } //////////// // UBJSON // //////////// /*! @param[in] get_char whether a new character should be retrieved from the input (true, default) or whether the last read character should be considered instead @return whether a valid UBJSON value was passed to the SAX parser */ bool parse_ubjson_internal(const bool get_char = true) { return get_ubjson_value(get_char ? get_ignore_noop() : current); } /*! @brief reads a UBJSON string This function is either called after reading the 'S' byte explicitly indicating a string, or in case of an object key where the 'S' byte can be left out. @param[out] result created string @param[in] get_char whether a new character should be retrieved from the input (true, default) or whether the last read character should be considered instead @return whether string creation completed */ bool get_ubjson_string(string_t& result, const bool get_char = true) { if (get_char) { get(); // TODO(niels): may we ignore N here? } if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value"))) { return false; } switch (current) { case 'U': { std::uint8_t len; return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result); } case 'i': { std::int8_t len; return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result); } case 'I': { std::int16_t len; return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result); } case 'l': { std::int32_t len; return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result); } case 'L': { std::int64_t len; return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result); } default: auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L); last byte: 0x" + last_token, "string"))); } } /*! @param[out] result determined size @return whether size determination completed */ bool get_ubjson_size_value(std::size_t& result) { switch (get_ignore_noop()) { case 'U': { std::uint8_t number; if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number))) { return false; } result = static_cast<std::size_t>(number); return true; } case 'i': { std::int8_t number; if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number))) { return false; } result = static_cast<std::size_t>(number); return true; } case 'I': { std::int16_t number; if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number))) { return false; } result = static_cast<std::size_t>(number); return true; } case 'l': { std::int32_t number; if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number))) { return false; } result = static_cast<std::size_t>(number); return true; } case 'L': { std::int64_t number; if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number))) { return false; } result = static_cast<std::size_t>(number); return true; } default: { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L) after '#'; last byte: 0x" + last_token, "size"))); } } } /*! @brief determine the type and size for a container In the optimized UBJSON format, a type and a size can be provided to allow for a more compact representation. @param[out] result pair of the size and the type @return whether pair creation completed */ bool get_ubjson_size_type(std::pair<std::size_t, int>& result) { result.first = string_t::npos; // size result.second = 0; // type get_ignore_noop(); if (current == '$') { result.second = get(); // must not ignore 'N', because 'N' maybe the type if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "type"))) { return false; } get_ignore_noop(); if (JSON_UNLIKELY(current != '#')) { if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value"))) { return false; } auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "expected '#' after type information; last byte: 0x" + last_token, "size"))); } return get_ubjson_size_value(result.first); } if (current == '#') { return get_ubjson_size_value(result.first); } return true; } /*! @param prefix the previously read or set type prefix @return whether value creation completed */ bool get_ubjson_value(const int prefix) { switch (prefix) { case std::char_traits<char>::eof(): // EOF return unexpect_eof(input_format_t::ubjson, "value"); case 'T': // true return sax->boolean(true); case 'F': // false return sax->boolean(false); case 'Z': // null return sax->null(); case 'U': { std::uint8_t number; return get_number(input_format_t::ubjson, number) and sax->number_unsigned(number); } case 'i': { std::int8_t number; return get_number(input_format_t::ubjson, number) and sax->number_integer(number); } case 'I': { std::int16_t number; return get_number(input_format_t::ubjson, number) and sax->number_integer(number); } case 'l': { std::int32_t number; return get_number(input_format_t::ubjson, number) and sax->number_integer(number); } case 'L': { std::int64_t number; return get_number(input_format_t::ubjson, number) and sax->number_integer(number); } case 'd': { float number; return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), ""); } case 'D': { double number; return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), ""); } case 'C': // char { get(); if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "char"))) { return false; } if (JSON_UNLIKELY(current > 127)) { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "byte after 'C' must be in range 0x00..0x7F; last byte: 0x" + last_token, "char"))); } string_t s(1, static_cast<char>(current)); return sax->string(s); } case 'S': // string { string_t s; return get_ubjson_string(s) and sax->string(s); } case '[': // array return get_ubjson_array(); case '{': // object return get_ubjson_object(); default: // anything else { auto last_token = get_token_string(); return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "invalid byte: 0x" + last_token, "value"))); } } } /*! @return whether array creation completed */ bool get_ubjson_array() { std::pair<std::size_t, int> size_and_type; if (JSON_UNLIKELY(not get_ubjson_size_type(size_and_type))) { return false; } if (size_and_type.first != string_t::npos) { if (JSON_UNLIKELY(not sax->start_array(size_and_type.first))) { return false; } if (size_and_type.second != 0) { if (size_and_type.second != 'N') { for (std::size_t i = 0; i < size_and_type.first; ++i) { if (JSON_UNLIKELY(not get_ubjson_value(size_and_type.second))) { return false; } } } } else { for (std::size_t i = 0; i < size_and_type.first; ++i) { if (JSON_UNLIKELY(not parse_ubjson_internal())) { return false; } } } } else { if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1)))) { return false; } while (current != ']') { if (JSON_UNLIKELY(not parse_ubjson_internal(false))) { return false; } get_ignore_noop(); } } return sax->end_array(); } /*! @return whether object creation completed */ bool get_ubjson_object() { std::pair<std::size_t, int> size_and_type; if (JSON_UNLIKELY(not get_ubjson_size_type(size_and_type))) { return false; } string_t key; if (size_and_type.first != string_t::npos) { if (JSON_UNLIKELY(not sax->start_object(size_and_type.first))) { return false; } if (size_and_type.second != 0) { for (std::size_t i = 0; i < size_and_type.first; ++i) { if (JSON_UNLIKELY(not get_ubjson_string(key) or not sax->key(key))) { return false; } if (JSON_UNLIKELY(not get_ubjson_value(size_and_type.second))) { return false; } key.clear(); } } else { for (std::size_t i = 0; i < size_and_type.first; ++i) { if (JSON_UNLIKELY(not get_ubjson_string(key) or not sax->key(key))) { return false; } if (JSON_UNLIKELY(not parse_ubjson_internal())) { return false; } key.clear(); } } } else { if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1)))) { return false; } while (current != '}') { if (JSON_UNLIKELY(not get_ubjson_string(key, false) or not sax->key(key))) { return false; } if (JSON_UNLIKELY(not parse_ubjson_internal())) { return false; } get_ignore_noop(); key.clear(); } } return sax->end_object(); } /////////////////////// // Utility functions // /////////////////////// /*! @brief get next character from the input This function provides the interface to the used input adapter. It does not throw in case the input reached EOF, but returns a -'ve valued `std::char_traits<char>::eof()` in that case. @return character read from the input */ int get() { ++chars_read; return current = ia->get_character(); } /*! @return character read from the input after ignoring all 'N' entries */ int get_ignore_noop() { do { get(); } while (current == 'N'); return current; } /* @brief read a number from the input @tparam NumberType the type of the number @param[in] format the current format (for diagnostics) @param[out] result number of type @a NumberType @return whether conversion completed @note This function needs to respect the system's endianess, because bytes in CBOR, MessagePack, and UBJSON are stored in network order (big endian) and therefore need reordering on little endian systems. */ template<typename NumberType, bool InputIsLittleEndian = false> bool get_number(const input_format_t format, NumberType& result) { // step 1: read input into array with system's byte order std::array<std::uint8_t, sizeof(NumberType)> vec; for (std::size_t i = 0; i < sizeof(NumberType); ++i) { get(); if (JSON_UNLIKELY(not unexpect_eof(format, "number"))) { return false; } // reverse byte order prior to conversion if necessary if (is_little_endian != InputIsLittleEndian) { vec[sizeof(NumberType) - i - 1] = static_cast<std::uint8_t>(current); } else { vec[i] = static_cast<std::uint8_t>(current); // LCOV_EXCL_LINE } } // step 2: convert array into number of type T and return std::memcpy(&result, vec.data(), sizeof(NumberType)); return true; } /*! @brief create a string by reading characters from the input @tparam NumberType the type of the number @param[in] format the current format (for diagnostics) @param[in] len number of characters to read @param[out] result string created by reading @a len bytes @return whether string creation completed @note We can not reserve @a len bytes for the result, because @a len may be too large. Usually, @ref unexpect_eof() detects the end of the input before we run out of string memory. */ template<typename NumberType> bool get_string(const input_format_t format, const NumberType len, string_t& result) { bool success = true; std::generate_n(std::back_inserter(result), len, [this, &success, &format]() { get(); if (JSON_UNLIKELY(not unexpect_eof(format, "string"))) { success = false; } return static_cast<char>(current); }); return success; } /*! @param[in] format the current format (for diagnostics) @param[in] context further context information (for diagnostics) @return whether the last read character is not EOF */ bool unexpect_eof(const input_format_t format, const char* context) const { if (JSON_UNLIKELY(current == std::char_traits<char>::eof())) { return sax->parse_error(chars_read, "<end of file>", parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context))); } return true; } /*! @return a string representation of the last read byte */ std::string get_token_string() const { std::array<char, 3> cr{{}}; (std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(current)); return std::string{cr.data()}; } /*! @param[in] format the current format @param[in] detail a detailed error message @param[in] context further contect information @return a message string to use in the parse_error exceptions */ std::string exception_message(const input_format_t format, const std::string& detail, const std::string& context) const { std::string error_msg = "syntax error while parsing "; switch (format) { case input_format_t::cbor: error_msg += "CBOR"; break; case input_format_t::msgpack: error_msg += "MessagePack"; break; case input_format_t::ubjson: error_msg += "UBJSON"; break; case input_format_t::bson: error_msg += "BSON"; break; default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } return error_msg + " " + context + ": " + detail; } private: /// input adapter input_adapter_t ia = nullptr; /// the current character int current = std::char_traits<char>::eof(); /// the number of characters read std::size_t chars_read = 0; /// whether we can assume little endianess const bool is_little_endian = little_endianess(); /// the SAX parser json_sax_t* sax = nullptr; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/input/input_adapters.hpp> // #include <nlohmann/detail/input/lexer.hpp> #include <array> // array #include <clocale> // localeconv #include <cstddef> // size_t #include <cstdio> // snprintf #include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull #include <initializer_list> // initializer_list #include <string> // char_traits, string #include <utility> // move #include <vector> // vector // #include <nlohmann/detail/input/input_adapters.hpp> // #include <nlohmann/detail/input/position_t.hpp> // #include <nlohmann/detail/macro_scope.hpp> namespace nlohmann { namespace detail { /////////// // lexer // /////////// /*! @brief lexical analysis This class organizes the lexical analysis during JSON deserialization. */ template<typename BasicJsonType> class lexer { using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; public: /// token types for the parser enum class token_type { uninitialized, ///< indicating the scanner is uninitialized literal_true, ///< the `true` literal literal_false, ///< the `false` literal literal_null, ///< the `null` literal value_string, ///< a string -- use get_string() for actual value value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value value_integer, ///< a signed integer -- use get_number_integer() for actual value value_float, ///< an floating point number -- use get_number_float() for actual value begin_array, ///< the character for array begin `[` begin_object, ///< the character for object begin `{` end_array, ///< the character for array end `]` end_object, ///< the character for object end `}` name_separator, ///< the name separator `:` value_separator, ///< the value separator `,` parse_error, ///< indicating a parse error end_of_input, ///< indicating the end of the input buffer literal_or_value ///< a literal or the begin of a value (only for diagnostics) }; /// return name of values of type token_type (only used for errors) static const char* token_type_name(const token_type t) noexcept { switch (t) { case token_type::uninitialized: return "<uninitialized>"; case token_type::literal_true: return "true literal"; case token_type::literal_false: return "false literal"; case token_type::literal_null: return "null literal"; case token_type::value_string: return "string literal"; case lexer::token_type::value_unsigned: case lexer::token_type::value_integer: case lexer::token_type::value_float: return "number literal"; case token_type::begin_array: return "'['"; case token_type::begin_object: return "'{'"; case token_type::end_array: return "']'"; case token_type::end_object: return "'}'"; case token_type::name_separator: return "':'"; case token_type::value_separator: return "','"; case token_type::parse_error: return "<parse error>"; case token_type::end_of_input: return "end of input"; case token_type::literal_or_value: return "'[', '{', or a literal"; // LCOV_EXCL_START default: // catch non-enum values return "unknown token"; // LCOV_EXCL_STOP } } explicit lexer(detail::input_adapter_t&& adapter) : ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {} // delete because of pointer members lexer(const lexer&) = delete; lexer(lexer&&) = delete; lexer& operator=(lexer&) = delete; lexer& operator=(lexer&&) = delete; ~lexer() = default; private: ///////////////////// // locales ///////////////////// /// return the locale-dependent decimal point static char get_decimal_point() noexcept { const auto loc = localeconv(); assert(loc != nullptr); return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point); } ///////////////////// // scan functions ///////////////////// /*! @brief get codepoint from 4 hex characters following `\u` For input "\u c1 c2 c3 c4" the codepoint is: (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4 = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0) Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f' must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The conversion is done by subtracting the offset (0x30, 0x37, and 0x57) between the ASCII value of the character and the desired integer value. @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or non-hex character) */ int get_codepoint() { // this function only makes sense after reading `\u` assert(current == 'u'); int codepoint = 0; const auto factors = { 12u, 8u, 4u, 0u }; for (const auto factor : factors) { get(); if (current >= '0' and current <= '9') { codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x30u) << factor); } else if (current >= 'A' and current <= 'F') { codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x37u) << factor); } else if (current >= 'a' and current <= 'f') { codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x57u) << factor); } else { return -1; } } assert(0x0000 <= codepoint and codepoint <= 0xFFFF); return codepoint; } /*! @brief check if the next byte(s) are inside a given range Adds the current byte and, for each passed range, reads a new byte and checks if it is inside the range. If a violation was detected, set up an error message and return false. Otherwise, return true. @param[in] ranges list of integers; interpreted as list of pairs of inclusive lower and upper bound, respectively @pre The passed list @a ranges must have 2, 4, or 6 elements; that is, 1, 2, or 3 pairs. This precondition is enforced by an assertion. @return true if and only if no range violation was detected */ bool next_byte_in_range(std::initializer_list<int> ranges) { assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6); add(current); for (auto range = ranges.begin(); range != ranges.end(); ++range) { get(); if (JSON_LIKELY(*range <= current and current <= *(++range))) { add(current); } else { error_message = "invalid string: ill-formed UTF-8 byte"; return false; } } return true; } /*! @brief scan a string literal This function scans a string according to Sect. 7 of RFC 7159. While scanning, bytes are escaped and copied into buffer token_buffer. Then the function returns successfully, token_buffer is *not* null-terminated (as it may contain \0 bytes), and token_buffer.size() is the number of bytes in the string. @return token_type::value_string if string could be successfully scanned, token_type::parse_error otherwise @note In case of errors, variable error_message contains a textual description. */ token_type scan_string() { // reset token_buffer (ignore opening quote) reset(); // we entered the function by reading an open quote assert(current == '\"'); while (true) { // get next character switch (get()) { // end of file while parsing string case std::char_traits<char>::eof(): { error_message = "invalid string: missing closing quote"; return token_type::parse_error; } // closing quote case '\"': { return token_type::value_string; } // escapes case '\\': { switch (get()) { // quotation mark case '\"': add('\"'); break; // reverse solidus case '\\': add('\\'); break; // solidus case '/': add('/'); break; // backspace case 'b': add('\b'); break; // form feed case 'f': add('\f'); break; // line feed case 'n': add('\n'); break; // carriage return case 'r': add('\r'); break; // tab case 't': add('\t'); break; // unicode escapes case 'u': { const int codepoint1 = get_codepoint(); int codepoint = codepoint1; // start with codepoint1 if (JSON_UNLIKELY(codepoint1 == -1)) { error_message = "invalid string: '\\u' must be followed by 4 hex digits"; return token_type::parse_error; } // check if code point is a high surrogate if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF) { // expect next \uxxxx entry if (JSON_LIKELY(get() == '\\' and get() == 'u')) { const int codepoint2 = get_codepoint(); if (JSON_UNLIKELY(codepoint2 == -1)) { error_message = "invalid string: '\\u' must be followed by 4 hex digits"; return token_type::parse_error; } // check if codepoint2 is a low surrogate if (JSON_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF)) { // overwrite codepoint codepoint = static_cast<int>( // high surrogate occupies the most significant 22 bits (static_cast<unsigned int>(codepoint1) << 10u) // low surrogate occupies the least significant 15 bits + static_cast<unsigned int>(codepoint2) // there is still the 0xD800, 0xDC00 and 0x10000 noise // in the result so we have to subtract with: // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00 - 0x35FDC00u); } else { error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF"; return token_type::parse_error; } } else { error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF"; return token_type::parse_error; } } else { if (JSON_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF)) { error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF"; return token_type::parse_error; } } // result of the above calculation yields a proper codepoint assert(0x00 <= codepoint and codepoint <= 0x10FFFF); // translate codepoint into bytes if (codepoint < 0x80) { // 1-byte characters: 0xxxxxxx (ASCII) add(codepoint); } else if (codepoint <= 0x7FF) { // 2-byte characters: 110xxxxx 10xxxxxx add(static_cast<int>(0xC0u | (static_cast<unsigned int>(codepoint) >> 6u))); add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu))); } else if (codepoint <= 0xFFFF) { // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx add(static_cast<int>(0xE0u | (static_cast<unsigned int>(codepoint) >> 12u))); add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu))); add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu))); } else { // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx add(static_cast<int>(0xF0u | (static_cast<unsigned int>(codepoint) >> 18u))); add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 12u) & 0x3Fu))); add(static_cast<int>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu))); add(static_cast<int>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu))); } break; } // other characters after escape default: error_message = "invalid string: forbidden character after backslash"; return token_type::parse_error; } break; } // invalid control characters case 0x00: { error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000"; return token_type::parse_error; } case 0x01: { error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001"; return token_type::parse_error; } case 0x02: { error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002"; return token_type::parse_error; } case 0x03: { error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003"; return token_type::parse_error; } case 0x04: { error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004"; return token_type::parse_error; } case 0x05: { error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005"; return token_type::parse_error; } case 0x06: { error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006"; return token_type::parse_error; } case 0x07: { error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007"; return token_type::parse_error; } case 0x08: { error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b"; return token_type::parse_error; } case 0x09: { error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t"; return token_type::parse_error; } case 0x0A: { error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n"; return token_type::parse_error; } case 0x0B: { error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B"; return token_type::parse_error; } case 0x0C: { error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f"; return token_type::parse_error; } case 0x0D: { error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r"; return token_type::parse_error; } case 0x0E: { error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E"; return token_type::parse_error; } case 0x0F: { error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F"; return token_type::parse_error; } case 0x10: { error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010"; return token_type::parse_error; } case 0x11: { error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011"; return token_type::parse_error; } case 0x12: { error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012"; return token_type::parse_error; } case 0x13: { error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013"; return token_type::parse_error; } case 0x14: { error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014"; return token_type::parse_error; } case 0x15: { error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015"; return token_type::parse_error; } case 0x16: { error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016"; return token_type::parse_error; } case 0x17: { error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017"; return token_type::parse_error; } case 0x18: { error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018"; return token_type::parse_error; } case 0x19: { error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019"; return token_type::parse_error; } case 0x1A: { error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A"; return token_type::parse_error; } case 0x1B: { error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B"; return token_type::parse_error; } case 0x1C: { error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C"; return token_type::parse_error; } case 0x1D: { error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D"; return token_type::parse_error; } case 0x1E: { error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E"; return token_type::parse_error; } case 0x1F: { error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F"; return token_type::parse_error; } // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace)) case 0x20: case 0x21: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: case 0x29: case 0x2A: case 0x2B: case 0x2C: case 0x2D: case 0x2E: case 0x2F: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F: case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4A: case 0x4B: case 0x4C: case 0x4D: case 0x4E: case 0x4F: case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x58: case 0x59: case 0x5A: case 0x5B: case 0x5D: case 0x5E: case 0x5F: case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7A: case 0x7B: case 0x7C: case 0x7D: case 0x7E: case 0x7F: { add(current); break; } // U+0080..U+07FF: bytes C2..DF 80..BF case 0xC2: case 0xC3: case 0xC4: case 0xC5: case 0xC6: case 0xC7: case 0xC8: case 0xC9: case 0xCA: case 0xCB: case 0xCC: case 0xCD: case 0xCE: case 0xCF: case 0xD0: case 0xD1: case 0xD2: case 0xD3: case 0xD4: case 0xD5: case 0xD6: case 0xD7: case 0xD8: case 0xD9: case 0xDA: case 0xDB: case 0xDC: case 0xDD: case 0xDE: case 0xDF: { if (JSON_UNLIKELY(not next_byte_in_range({0x80, 0xBF}))) { return token_type::parse_error; } break; } // U+0800..U+0FFF: bytes E0 A0..BF 80..BF case 0xE0: { if (JSON_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF case 0xE1: case 0xE2: case 0xE3: case 0xE4: case 0xE5: case 0xE6: case 0xE7: case 0xE8: case 0xE9: case 0xEA: case 0xEB: case 0xEC: case 0xEE: case 0xEF: { if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+D000..U+D7FF: bytes ED 80..9F 80..BF case 0xED: { if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF case 0xF0: { if (JSON_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF case 0xF1: case 0xF2: case 0xF3: { if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF case 0xF4: { if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF})))) { return token_type::parse_error; } break; } // remaining bytes (80..C1 and F5..FF) are ill-formed default: { error_message = "invalid string: ill-formed UTF-8 byte"; return token_type::parse_error; } } } } static void strtof(float& f, const char* str, char** endptr) noexcept { f = std::strtof(str, endptr); } static void strtof(double& f, const char* str, char** endptr) noexcept { f = std::strtod(str, endptr); } static void strtof(long double& f, const char* str, char** endptr) noexcept { f = std::strtold(str, endptr); } /*! @brief scan a number literal This function scans a string according to Sect. 6 of RFC 7159. The function is realized with a deterministic finite state machine derived from the grammar described in RFC 7159. Starting in state "init", the input is read and used to determined the next state. Only state "done" accepts the number. State "error" is a trap state to model errors. In the table below, "anything" means any character but the ones listed before. state | 0 | 1-9 | e E | + | - | . | anything ---------|----------|----------|----------|---------|---------|----------|----------- init | zero | any1 | [error] | [error] | minus | [error] | [error] minus | zero | any1 | [error] | [error] | [error] | [error] | [error] zero | done | done | exponent | done | done | decimal1 | done any1 | any1 | any1 | exponent | done | done | decimal1 | done decimal1 | decimal2 | [error] | [error] | [error] | [error] | [error] | [error] decimal2 | decimal2 | decimal2 | exponent | done | done | done | done exponent | any2 | any2 | [error] | sign | sign | [error] | [error] sign | any2 | any2 | [error] | [error] | [error] | [error] | [error] any2 | any2 | any2 | done | done | done | done | done The state machine is realized with one label per state (prefixed with "scan_number_") and `goto` statements between them. The state machine contains cycles, but any cycle can be left when EOF is read. Therefore, the function is guaranteed to terminate. During scanning, the read bytes are stored in token_buffer. This string is then converted to a signed integer, an unsigned integer, or a floating-point number. @return token_type::value_unsigned, token_type::value_integer, or token_type::value_float if number could be successfully scanned, token_type::parse_error otherwise @note The scanner is independent of the current locale. Internally, the locale's decimal point is used instead of `.` to work with the locale-dependent converters. */ token_type scan_number() // lgtm [cpp/use-of-goto] { // reset token_buffer to store the number's bytes reset(); // the type of the parsed number; initially set to unsigned; will be // changed if minus sign, decimal point or exponent is read token_type number_type = token_type::value_unsigned; // state (init): we just found out we need to scan a number switch (current) { case '-': { add(current); goto scan_number_minus; } case '0': { add(current); goto scan_number_zero; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any1; } // all other characters are rejected outside scan_number() default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } scan_number_minus: // state: we just parsed a leading minus sign number_type = token_type::value_integer; switch (get()) { case '0': { add(current); goto scan_number_zero; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any1; } default: { error_message = "invalid number; expected digit after '-'"; return token_type::parse_error; } } scan_number_zero: // state: we just parse a zero (maybe with a leading minus sign) switch (get()) { case '.': { add(decimal_point_char); goto scan_number_decimal1; } case 'e': case 'E': { add(current); goto scan_number_exponent; } default: goto scan_number_done; } scan_number_any1: // state: we just parsed a number 0-9 (maybe with a leading minus sign) switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any1; } case '.': { add(decimal_point_char); goto scan_number_decimal1; } case 'e': case 'E': { add(current); goto scan_number_exponent; } default: goto scan_number_done; } scan_number_decimal1: // state: we just parsed a decimal point number_type = token_type::value_float; switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_decimal2; } default: { error_message = "invalid number; expected digit after '.'"; return token_type::parse_error; } } scan_number_decimal2: // we just parsed at least one number after a decimal point switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_decimal2; } case 'e': case 'E': { add(current); goto scan_number_exponent; } default: goto scan_number_done; } scan_number_exponent: // we just parsed an exponent number_type = token_type::value_float; switch (get()) { case '+': case '-': { add(current); goto scan_number_sign; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any2; } default: { error_message = "invalid number; expected '+', '-', or digit after exponent"; return token_type::parse_error; } } scan_number_sign: // we just parsed an exponent sign switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any2; } default: { error_message = "invalid number; expected digit after exponent sign"; return token_type::parse_error; } } scan_number_any2: // we just parsed a number after the exponent or exponent sign switch (get()) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { add(current); goto scan_number_any2; } default: goto scan_number_done; } scan_number_done: // unget the character after the number (we only read it to know that // we are done scanning a number) unget(); char* endptr = nullptr; errno = 0; // try to parse integers first and fall back to floats if (number_type == token_type::value_unsigned) { const auto x = std::strtoull(token_buffer.data(), &endptr, 10); // we checked the number format before assert(endptr == token_buffer.data() + token_buffer.size()); if (errno == 0) { value_unsigned = static_cast<number_unsigned_t>(x); if (value_unsigned == x) { return token_type::value_unsigned; } } } else if (number_type == token_type::value_integer) { const auto x = std::strtoll(token_buffer.data(), &endptr, 10); // we checked the number format before assert(endptr == token_buffer.data() + token_buffer.size()); if (errno == 0) { value_integer = static_cast<number_integer_t>(x); if (value_integer == x) { return token_type::value_integer; } } } // this code is reached if we parse a floating-point number or if an // integer conversion above failed strtof(value_float, token_buffer.data(), &endptr); // we checked the number format before assert(endptr == token_buffer.data() + token_buffer.size()); return token_type::value_float; } /*! @param[in] literal_text the literal text to expect @param[in] length the length of the passed literal text @param[in] return_type the token type to return on success */ token_type scan_literal(const char* literal_text, const std::size_t length, token_type return_type) { assert(current == literal_text[0]); for (std::size_t i = 1; i < length; ++i) { if (JSON_UNLIKELY(get() != literal_text[i])) { error_message = "invalid literal"; return token_type::parse_error; } } return return_type; } ///////////////////// // input management ///////////////////// /// reset token_buffer; current character is beginning of token void reset() noexcept { token_buffer.clear(); token_string.clear(); token_string.push_back(std::char_traits<char>::to_char_type(current)); } /* @brief get next character from the input This function provides the interface to the used input adapter. It does not throw in case the input reached EOF, but returns a `std::char_traits<char>::eof()` in that case. Stores the scanned characters for use in error messages. @return character read from the input */ std::char_traits<char>::int_type get() { ++position.chars_read_total; ++position.chars_read_current_line; if (next_unget) { // just reset the next_unget variable and work with current next_unget = false; } else { current = ia->get_character(); } if (JSON_LIKELY(current != std::char_traits<char>::eof())) { token_string.push_back(std::char_traits<char>::to_char_type(current)); } if (current == '\n') { ++position.lines_read; position.chars_read_current_line = 0; } return current; } /*! @brief unget current character (read it again on next get) We implement unget by setting variable next_unget to true. The input is not changed - we just simulate ungetting by modifying chars_read_total, chars_read_current_line, and token_string. The next call to get() will behave as if the unget character is read again. */ void unget() { next_unget = true; --position.chars_read_total; // in case we "unget" a newline, we have to also decrement the lines_read if (position.chars_read_current_line == 0) { if (position.lines_read > 0) { --position.lines_read; } } else { --position.chars_read_current_line; } if (JSON_LIKELY(current != std::char_traits<char>::eof())) { assert(not token_string.empty()); token_string.pop_back(); } } /// add a character to token_buffer void add(int c) { token_buffer.push_back(std::char_traits<char>::to_char_type(c)); } public: ///////////////////// // value getters ///////////////////// /// return integer value constexpr number_integer_t get_number_integer() const noexcept { return value_integer; } /// return unsigned integer value constexpr number_unsigned_t get_number_unsigned() const noexcept { return value_unsigned; } /// return floating-point value constexpr number_float_t get_number_float() const noexcept { return value_float; } /// return current string value (implicitly resets the token; useful only once) string_t& get_string() { return token_buffer; } ///////////////////// // diagnostics ///////////////////// /// return position of last read token constexpr position_t get_position() const noexcept { return position; } /// return the last read token (for errors only). Will never contain EOF /// (an arbitrary value that is not a valid char value, often -1), because /// 255 may legitimately occur. May contain NUL, which should be escaped. std::string get_token_string() const { // escape control characters std::string result; for (const auto c : token_string) { if ('\x00' <= c and c <= '\x1F') { // escape control characters std::array<char, 9> cs{{}}; (std::snprintf)(cs.data(), cs.size(), "<U+%.4X>", static_cast<unsigned char>(c)); result += cs.data(); } else { // add character as is result.push_back(c); } } return result; } /// return syntax error message constexpr const char* get_error_message() const noexcept { return error_message; } ///////////////////// // actual scanner ///////////////////// /*! @brief skip the UTF-8 byte order mark @return true iff there is no BOM or the correct BOM has been skipped */ bool skip_bom() { if (get() == 0xEF) { // check if we completely parse the BOM return get() == 0xBB and get() == 0xBF; } // the first character is not the beginning of the BOM; unget it to // process is later unget(); return true; } token_type scan() { // initially, skip the BOM if (position.chars_read_total == 0 and not skip_bom()) { error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given"; return token_type::parse_error; } // read next character and ignore whitespace do { get(); } while (current == ' ' or current == '\t' or current == '\n' or current == '\r'); switch (current) { // structural characters case '[': return token_type::begin_array; case ']': return token_type::end_array; case '{': return token_type::begin_object; case '}': return token_type::end_object; case ':': return token_type::name_separator; case ',': return token_type::value_separator; // literals case 't': return scan_literal("true", 4, token_type::literal_true); case 'f': return scan_literal("false", 5, token_type::literal_false); case 'n': return scan_literal("null", 4, token_type::literal_null); // string case '\"': return scan_string(); // number case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return scan_number(); // end of input (the null byte is needed when parsing from // string literals) case '\0': case std::char_traits<char>::eof(): return token_type::end_of_input; // error default: error_message = "invalid literal"; return token_type::parse_error; } } private: /// input adapter detail::input_adapter_t ia = nullptr; /// the current character std::char_traits<char>::int_type current = std::char_traits<char>::eof(); /// whether the next get() call should just return current bool next_unget = false; /// the start position of the current token position_t position {}; /// raw input token string (for error messages) std::vector<char> token_string {}; /// buffer for variable-length tokens (numbers, strings) string_t token_buffer {}; /// a description of occurred lexer errors const char* error_message = ""; // number values number_integer_t value_integer = 0; number_unsigned_t value_unsigned = 0; number_float_t value_float = 0; /// the decimal point const char decimal_point_char = '.'; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/input/parser.hpp> #include <cassert> // assert #include <cmath> // isfinite #include <cstdint> // uint8_t #include <functional> // function #include <string> // string #include <utility> // move #include <vector> // vector // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/input/input_adapters.hpp> // #include <nlohmann/detail/input/json_sax.hpp> // #include <nlohmann/detail/input/lexer.hpp> // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/meta/is_sax.hpp> // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { namespace detail { //////////// // parser // //////////// /*! @brief syntax analysis This class implements a recursive decent parser. */ template<typename BasicJsonType> class parser { using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; using number_float_t = typename BasicJsonType::number_float_t; using string_t = typename BasicJsonType::string_t; using lexer_t = lexer<BasicJsonType>; using token_type = typename lexer_t::token_type; public: enum class parse_event_t : uint8_t { /// the parser read `{` and started to process a JSON object object_start, /// the parser read `}` and finished processing a JSON object object_end, /// the parser read `[` and started to process a JSON array array_start, /// the parser read `]` and finished processing a JSON array array_end, /// the parser read a key of a value in an object key, /// the parser finished reading a JSON value value }; using parser_callback_t = std::function<bool(int depth, parse_event_t event, BasicJsonType& parsed)>; /// a parser reading from an input adapter explicit parser(detail::input_adapter_t&& adapter, const parser_callback_t cb = nullptr, const bool allow_exceptions_ = true) : callback(cb), m_lexer(std::move(adapter)), allow_exceptions(allow_exceptions_) { // read first token get_token(); } /*! @brief public parser interface @param[in] strict whether to expect the last token to be EOF @param[in,out] result parsed JSON value @throw parse_error.101 in case of an unexpected token @throw parse_error.102 if to_unicode fails or surrogate error @throw parse_error.103 if to_unicode fails */ void parse(const bool strict, BasicJsonType& result) { if (callback) { json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions); sax_parse_internal(&sdp); result.assert_invariant(); // in strict mode, input must be completely read if (strict and (get_token() != token_type::end_of_input)) { sdp.parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"))); } // in case of an error, return discarded value if (sdp.is_errored()) { result = value_t::discarded; return; } // set top-level value to null if it was discarded by the callback // function if (result.is_discarded()) { result = nullptr; } } else { json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions); sax_parse_internal(&sdp); result.assert_invariant(); // in strict mode, input must be completely read if (strict and (get_token() != token_type::end_of_input)) { sdp.parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"))); } // in case of an error, return discarded value if (sdp.is_errored()) { result = value_t::discarded; return; } } } /*! @brief public accept interface @param[in] strict whether to expect the last token to be EOF @return whether the input is a proper JSON text */ bool accept(const bool strict = true) { json_sax_acceptor<BasicJsonType> sax_acceptor; return sax_parse(&sax_acceptor, strict); } template <typename SAX> bool sax_parse(SAX* sax, const bool strict = true) { (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {}; const bool result = sax_parse_internal(sax); // strict mode: next byte must be EOF if (result and strict and (get_token() != token_type::end_of_input)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"))); } return result; } private: template <typename SAX> bool sax_parse_internal(SAX* sax) { // stack to remember the hierarchy of structured values we are parsing // true = array; false = object std::vector<bool> states; // value to avoid a goto (see comment where set to true) bool skip_to_state_evaluation = false; while (true) { if (not skip_to_state_evaluation) { // invariant: get_token() was called before each iteration switch (last_token) { case token_type::begin_object: { if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1)))) { return false; } // closing } -> we are done if (get_token() == token_type::end_object) { if (JSON_UNLIKELY(not sax->end_object())) { return false; } break; } // parse key if (JSON_UNLIKELY(last_token != token_type::value_string)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"))); } if (JSON_UNLIKELY(not sax->key(m_lexer.get_string()))) { return false; } // parse separator (:) if (JSON_UNLIKELY(get_token() != token_type::name_separator)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"))); } // remember we are now inside an object states.push_back(false); // parse values get_token(); continue; } case token_type::begin_array: { if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1)))) { return false; } // closing ] -> we are done if (get_token() == token_type::end_array) { if (JSON_UNLIKELY(not sax->end_array())) { return false; } break; } // remember we are now inside an array states.push_back(true); // parse values (no need to call get_token) continue; } case token_type::value_float: { const auto res = m_lexer.get_number_float(); if (JSON_UNLIKELY(not std::isfinite(res))) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), out_of_range::create(406, "number overflow parsing '" + m_lexer.get_token_string() + "'")); } if (JSON_UNLIKELY(not sax->number_float(res, m_lexer.get_string()))) { return false; } break; } case token_type::literal_false: { if (JSON_UNLIKELY(not sax->boolean(false))) { return false; } break; } case token_type::literal_null: { if (JSON_UNLIKELY(not sax->null())) { return false; } break; } case token_type::literal_true: { if (JSON_UNLIKELY(not sax->boolean(true))) { return false; } break; } case token_type::value_integer: { if (JSON_UNLIKELY(not sax->number_integer(m_lexer.get_number_integer()))) { return false; } break; } case token_type::value_string: { if (JSON_UNLIKELY(not sax->string(m_lexer.get_string()))) { return false; } break; } case token_type::value_unsigned: { if (JSON_UNLIKELY(not sax->number_unsigned(m_lexer.get_number_unsigned()))) { return false; } break; } case token_type::parse_error: { // using "uninitialized" to avoid "expected" message return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized, "value"))); } default: // the last token was unexpected { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"))); } } } else { skip_to_state_evaluation = false; } // we reached this line after we successfully parsed a value if (states.empty()) { // empty stack: we reached the end of the hierarchy: done return true; } if (states.back()) // array { // comma -> next value if (get_token() == token_type::value_separator) { // parse a new value get_token(); continue; } // closing ] if (JSON_LIKELY(last_token == token_type::end_array)) { if (JSON_UNLIKELY(not sax->end_array())) { return false; } // We are done with this array. Before we can parse a // new value, we need to evaluate the new state first. // By setting skip_to_state_evaluation to false, we // are effectively jumping to the beginning of this if. assert(not states.empty()); states.pop_back(); skip_to_state_evaluation = true; continue; } return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array, "array"))); } else // object { // comma -> next value if (get_token() == token_type::value_separator) { // parse key if (JSON_UNLIKELY(get_token() != token_type::value_string)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"))); } if (JSON_UNLIKELY(not sax->key(m_lexer.get_string()))) { return false; } // parse separator (:) if (JSON_UNLIKELY(get_token() != token_type::name_separator)) { return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"))); } // parse values get_token(); continue; } // closing } if (JSON_LIKELY(last_token == token_type::end_object)) { if (JSON_UNLIKELY(not sax->end_object())) { return false; } // We are done with this object. Before we can parse a // new value, we need to evaluate the new state first. // By setting skip_to_state_evaluation to false, we // are effectively jumping to the beginning of this if. assert(not states.empty()); states.pop_back(); skip_to_state_evaluation = true; continue; } return sax->parse_error(m_lexer.get_position(), m_lexer.get_token_string(), parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object, "object"))); } } } /// get next token from lexer token_type get_token() { return last_token = m_lexer.scan(); } std::string exception_message(const token_type expected, const std::string& context) { std::string error_msg = "syntax error "; if (not context.empty()) { error_msg += "while parsing " + context + " "; } error_msg += "- "; if (last_token == token_type::parse_error) { error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" + m_lexer.get_token_string() + "'"; } else { error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token)); } if (expected != token_type::uninitialized) { error_msg += "; expected " + std::string(lexer_t::token_type_name(expected)); } return error_msg; } private: /// callback function const parser_callback_t callback = nullptr; /// the type of the last read token token_type last_token = token_type::uninitialized; /// the lexer lexer_t m_lexer; /// whether to throw exceptions in case of errors const bool allow_exceptions = true; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/iterators/internal_iterator.hpp> // #include <nlohmann/detail/iterators/primitive_iterator.hpp> #include <cstddef> // ptrdiff_t #include <limits> // numeric_limits namespace nlohmann { namespace detail { /* @brief an iterator for primitive JSON types This class models an iterator for primitive JSON types (boolean, number, string). It's only purpose is to allow the iterator/const_iterator classes to "iterate" over primitive values. Internally, the iterator is modeled by a `difference_type` variable. Value begin_value (`0`) models the begin, end_value (`1`) models past the end. */ class primitive_iterator_t { private: using difference_type = std::ptrdiff_t; static constexpr difference_type begin_value = 0; static constexpr difference_type end_value = begin_value + 1; /// iterator as signed integer type difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)(); public: constexpr difference_type get_value() const noexcept { return m_it; } /// set iterator to a defined beginning void set_begin() noexcept { m_it = begin_value; } /// set iterator to a defined past the end void set_end() noexcept { m_it = end_value; } /// return whether the iterator can be dereferenced constexpr bool is_begin() const noexcept { return m_it == begin_value; } /// return whether the iterator is at end constexpr bool is_end() const noexcept { return m_it == end_value; } friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it == rhs.m_it; } friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it < rhs.m_it; } primitive_iterator_t operator+(difference_type n) noexcept { auto result = *this; result += n; return result; } friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept { return lhs.m_it - rhs.m_it; } primitive_iterator_t& operator++() noexcept { ++m_it; return *this; } primitive_iterator_t const operator++(int) noexcept { auto result = *this; ++m_it; return result; } primitive_iterator_t& operator--() noexcept { --m_it; return *this; } primitive_iterator_t const operator--(int) noexcept { auto result = *this; --m_it; return result; } primitive_iterator_t& operator+=(difference_type n) noexcept { m_it += n; return *this; } primitive_iterator_t& operator-=(difference_type n) noexcept { m_it -= n; return *this; } }; } // namespace detail } // namespace nlohmann namespace nlohmann { namespace detail { /*! @brief an iterator value @note This structure could easily be a union, but MSVC currently does not allow unions members with complex constructors, see https://github.com/nlohmann/json/pull/105. */ template<typename BasicJsonType> struct internal_iterator { /// iterator for JSON objects typename BasicJsonType::object_t::iterator object_iterator {}; /// iterator for JSON arrays typename BasicJsonType::array_t::iterator array_iterator {}; /// generic iterator for all other types primitive_iterator_t primitive_iterator {}; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/iterators/iter_impl.hpp> #include <ciso646> // not #include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next #include <type_traits> // conditional, is_const, remove_const // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/iterators/internal_iterator.hpp> // #include <nlohmann/detail/iterators/primitive_iterator.hpp> // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/meta/cpp_future.hpp> // #include <nlohmann/detail/meta/type_traits.hpp> // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { namespace detail { // forward declare, to be able to friend it later on template<typename IteratorType> class iteration_proxy; template<typename IteratorType> class iteration_proxy_value; /*! @brief a template for a bidirectional iterator for the @ref basic_json class This class implements a both iterators (iterator and const_iterator) for the @ref basic_json class. @note An iterator is called *initialized* when a pointer to a JSON value has been set (e.g., by a constructor or a copy assignment). If the iterator is default-constructed, it is *uninitialized* and most methods are undefined. **The library uses assertions to detect calls on uninitialized iterators.** @requirement The class satisfies the following concept requirements: - [BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator): The iterator that can be moved can be moved in both directions (i.e. incremented and decremented). @since version 1.0.0, simplified in version 2.0.9, change to bidirectional iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593) */ template<typename BasicJsonType> class iter_impl { /// allow basic_json to access private members friend iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>; friend BasicJsonType; friend iteration_proxy<iter_impl>; friend iteration_proxy_value<iter_impl>; using object_t = typename BasicJsonType::object_t; using array_t = typename BasicJsonType::array_t; // make sure BasicJsonType is basic_json or const basic_json static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value, "iter_impl only accepts (const) basic_json"); public: /// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17. /// The C++ Standard has never required user-defined iterators to derive from std::iterator. /// A user-defined iterator should provide publicly accessible typedefs named /// iterator_category, value_type, difference_type, pointer, and reference. /// Note that value_type is required to be non-const, even for constant iterators. using iterator_category = std::bidirectional_iterator_tag; /// the type of the values when the iterator is dereferenced using value_type = typename BasicJsonType::value_type; /// a type to represent differences between iterators using difference_type = typename BasicJsonType::difference_type; /// defines a pointer to the type iterated over (value_type) using pointer = typename std::conditional<std::is_const<BasicJsonType>::value, typename BasicJsonType::const_pointer, typename BasicJsonType::pointer>::type; /// defines a reference to the type iterated over (value_type) using reference = typename std::conditional<std::is_const<BasicJsonType>::value, typename BasicJsonType::const_reference, typename BasicJsonType::reference>::type; /// default constructor iter_impl() = default; /*! @brief constructor for a given JSON instance @param[in] object pointer to a JSON object for this iterator @pre object != nullptr @post The iterator is initialized; i.e. `m_object != nullptr`. */ explicit iter_impl(pointer object) noexcept : m_object(object) { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { m_it.object_iterator = typename object_t::iterator(); break; } case value_t::array: { m_it.array_iterator = typename array_t::iterator(); break; } default: { m_it.primitive_iterator = primitive_iterator_t(); break; } } } /*! @note The conventional copy constructor and copy assignment are implicitly defined. Combined with the following converting constructor and assignment, they support: (1) copy from iterator to iterator, (2) copy from const iterator to const iterator, and (3) conversion from iterator to const iterator. However conversion from const iterator to iterator is not defined. */ /*! @brief converting constructor @param[in] other non-const iterator to copy from @note It is not checked whether @a other is initialized. */ iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept : m_object(other.m_object), m_it(other.m_it) {} /*! @brief converting assignment @param[in,out] other non-const iterator to copy from @return const/non-const iterator @note It is not checked whether @a other is initialized. */ iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept { m_object = other.m_object; m_it = other.m_it; return *this; } private: /*! @brief set the iterator to the first value @pre The iterator is initialized; i.e. `m_object != nullptr`. */ void set_begin() noexcept { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { m_it.object_iterator = m_object->m_value.object->begin(); break; } case value_t::array: { m_it.array_iterator = m_object->m_value.array->begin(); break; } case value_t::null: { // set to end so begin()==end() is true: null is empty m_it.primitive_iterator.set_end(); break; } default: { m_it.primitive_iterator.set_begin(); break; } } } /*! @brief set the iterator past the last value @pre The iterator is initialized; i.e. `m_object != nullptr`. */ void set_end() noexcept { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { m_it.object_iterator = m_object->m_value.object->end(); break; } case value_t::array: { m_it.array_iterator = m_object->m_value.array->end(); break; } default: { m_it.primitive_iterator.set_end(); break; } } } public: /*! @brief return a reference to the value pointed to by the iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ reference operator*() const { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { assert(m_it.object_iterator != m_object->m_value.object->end()); return m_it.object_iterator->second; } case value_t::array: { assert(m_it.array_iterator != m_object->m_value.array->end()); return *m_it.array_iterator; } case value_t::null: JSON_THROW(invalid_iterator::create(214, "cannot get value")); default: { if (JSON_LIKELY(m_it.primitive_iterator.is_begin())) { return *m_object; } JSON_THROW(invalid_iterator::create(214, "cannot get value")); } } } /*! @brief dereference the iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ pointer operator->() const { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { assert(m_it.object_iterator != m_object->m_value.object->end()); return &(m_it.object_iterator->second); } case value_t::array: { assert(m_it.array_iterator != m_object->m_value.array->end()); return &*m_it.array_iterator; } default: { if (JSON_LIKELY(m_it.primitive_iterator.is_begin())) { return m_object; } JSON_THROW(invalid_iterator::create(214, "cannot get value")); } } } /*! @brief post-increment (it++) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl const operator++(int) { auto result = *this; ++(*this); return result; } /*! @brief pre-increment (++it) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator++() { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { std::advance(m_it.object_iterator, 1); break; } case value_t::array: { std::advance(m_it.array_iterator, 1); break; } default: { ++m_it.primitive_iterator; break; } } return *this; } /*! @brief post-decrement (it--) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl const operator--(int) { auto result = *this; --(*this); return result; } /*! @brief pre-decrement (--it) @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator--() { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: { std::advance(m_it.object_iterator, -1); break; } case value_t::array: { std::advance(m_it.array_iterator, -1); break; } default: { --m_it.primitive_iterator; break; } } return *this; } /*! @brief comparison: equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator==(const iter_impl& other) const { // if objects are not the same, the comparison is undefined if (JSON_UNLIKELY(m_object != other.m_object)) { JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers")); } assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: return (m_it.object_iterator == other.m_it.object_iterator); case value_t::array: return (m_it.array_iterator == other.m_it.array_iterator); default: return (m_it.primitive_iterator == other.m_it.primitive_iterator); } } /*! @brief comparison: not equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator!=(const iter_impl& other) const { return not operator==(other); } /*! @brief comparison: smaller @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator<(const iter_impl& other) const { // if objects are not the same, the comparison is undefined if (JSON_UNLIKELY(m_object != other.m_object)) { JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers")); } assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators")); case value_t::array: return (m_it.array_iterator < other.m_it.array_iterator); default: return (m_it.primitive_iterator < other.m_it.primitive_iterator); } } /*! @brief comparison: less than or equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator<=(const iter_impl& other) const { return not other.operator < (*this); } /*! @brief comparison: greater than @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator>(const iter_impl& other) const { return not operator<=(other); } /*! @brief comparison: greater than or equal @pre The iterator is initialized; i.e. `m_object != nullptr`. */ bool operator>=(const iter_impl& other) const { return not operator<(other); } /*! @brief add to iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator+=(difference_type i) { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators")); case value_t::array: { std::advance(m_it.array_iterator, i); break; } default: { m_it.primitive_iterator += i; break; } } return *this; } /*! @brief subtract from iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl& operator-=(difference_type i) { return operator+=(-i); } /*! @brief add to iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl operator+(difference_type i) const { auto result = *this; result += i; return result; } /*! @brief addition of distance and iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ friend iter_impl operator+(difference_type i, const iter_impl& it) { auto result = it; result += i; return result; } /*! @brief subtract from iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ iter_impl operator-(difference_type i) const { auto result = *this; result -= i; return result; } /*! @brief return difference @pre The iterator is initialized; i.e. `m_object != nullptr`. */ difference_type operator-(const iter_impl& other) const { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators")); case value_t::array: return m_it.array_iterator - other.m_it.array_iterator; default: return m_it.primitive_iterator - other.m_it.primitive_iterator; } } /*! @brief access to successor @pre The iterator is initialized; i.e. `m_object != nullptr`. */ reference operator[](difference_type n) const { assert(m_object != nullptr); switch (m_object->m_type) { case value_t::object: JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators")); case value_t::array: return *std::next(m_it.array_iterator, n); case value_t::null: JSON_THROW(invalid_iterator::create(214, "cannot get value")); default: { if (JSON_LIKELY(m_it.primitive_iterator.get_value() == -n)) { return *m_object; } JSON_THROW(invalid_iterator::create(214, "cannot get value")); } } } /*! @brief return the key of an object iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ const typename object_t::key_type& key() const { assert(m_object != nullptr); if (JSON_LIKELY(m_object->is_object())) { return m_it.object_iterator->first; } JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators")); } /*! @brief return the value of an iterator @pre The iterator is initialized; i.e. `m_object != nullptr`. */ reference value() const { return operator*(); } private: /// associated JSON instance pointer m_object = nullptr; /// the actual iterator of the associated instance internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {}; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/iterators/iteration_proxy.hpp> // #include <nlohmann/detail/iterators/json_reverse_iterator.hpp> #include <cstddef> // ptrdiff_t #include <iterator> // reverse_iterator #include <utility> // declval namespace nlohmann { namespace detail { ////////////////////// // reverse_iterator // ////////////////////// /*! @brief a template for a reverse iterator class @tparam Base the base iterator type to reverse. Valid types are @ref iterator (to create @ref reverse_iterator) and @ref const_iterator (to create @ref const_reverse_iterator). @requirement The class satisfies the following concept requirements: - [BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator): The iterator that can be moved can be moved in both directions (i.e. incremented and decremented). - [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator): It is possible to write to the pointed-to element (only if @a Base is @ref iterator). @since version 1.0.0 */ template<typename Base> class json_reverse_iterator : public std::reverse_iterator<Base> { public: using difference_type = std::ptrdiff_t; /// shortcut to the reverse iterator adapter using base_iterator = std::reverse_iterator<Base>; /// the reference type for the pointed-to element using reference = typename Base::reference; /// create reverse iterator from iterator explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept : base_iterator(it) {} /// create reverse iterator from base class explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {} /// post-increment (it++) json_reverse_iterator const operator++(int) { return static_cast<json_reverse_iterator>(base_iterator::operator++(1)); } /// pre-increment (++it) json_reverse_iterator& operator++() { return static_cast<json_reverse_iterator&>(base_iterator::operator++()); } /// post-decrement (it--) json_reverse_iterator const operator--(int) { return static_cast<json_reverse_iterator>(base_iterator::operator--(1)); } /// pre-decrement (--it) json_reverse_iterator& operator--() { return static_cast<json_reverse_iterator&>(base_iterator::operator--()); } /// add to iterator json_reverse_iterator& operator+=(difference_type i) { return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i)); } /// add to iterator json_reverse_iterator operator+(difference_type i) const { return static_cast<json_reverse_iterator>(base_iterator::operator+(i)); } /// subtract from iterator json_reverse_iterator operator-(difference_type i) const { return static_cast<json_reverse_iterator>(base_iterator::operator-(i)); } /// return difference difference_type operator-(const json_reverse_iterator& other) const { return base_iterator(*this) - base_iterator(other); } /// access to successor reference operator[](difference_type n) const { return *(this->operator+(n)); } /// return the key of an object iterator auto key() const -> decltype(std::declval<Base>().key()) { auto it = --this->base(); return it.key(); } /// return the value of an iterator reference value() const { auto it = --this->base(); return it.operator * (); } }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/iterators/primitive_iterator.hpp> // #include <nlohmann/detail/json_pointer.hpp> #include <algorithm> // all_of #include <cassert> // assert #include <numeric> // accumulate #include <string> // string #include <utility> // move #include <vector> // vector // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { template<typename BasicJsonType> class json_pointer { // allow basic_json to access private members NLOHMANN_BASIC_JSON_TPL_DECLARATION friend class basic_json; public: /*! @brief create JSON pointer Create a JSON pointer according to the syntax described in [Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3). @param[in] s string representing the JSON pointer; if omitted, the empty string is assumed which references the whole JSON value @throw parse_error.107 if the given JSON pointer @a s is nonempty and does not begin with a slash (`/`); see example below @throw parse_error.108 if a tilde (`~`) in the given JSON pointer @a s is not followed by `0` (representing `~`) or `1` (representing `/`); see example below @liveexample{The example shows the construction several valid JSON pointers as well as the exceptional behavior.,json_pointer} @since version 2.0.0 */ explicit json_pointer(const std::string& s = "") : reference_tokens(split(s)) {} /*! @brief return a string representation of the JSON pointer @invariant For each JSON pointer `ptr`, it holds: @code {.cpp} ptr == json_pointer(ptr.to_string()); @endcode @return a string representation of the JSON pointer @liveexample{The example shows the result of `to_string`.,json_pointer__to_string} @since version 2.0.0 */ std::string to_string() const { return std::accumulate(reference_tokens.begin(), reference_tokens.end(), std::string{}, [](const std::string & a, const std::string & b) { return a + "/" + escape(b); }); } /// @copydoc to_string() operator std::string() const { return to_string(); } /*! @brief append another JSON pointer at the end of this JSON pointer @param[in] ptr JSON pointer to append @return JSON pointer with @a ptr appended @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add} @complexity Linear in the length of @a ptr. @sa @ref operator/=(std::string) to append a reference token @sa @ref operator/=(std::size_t) to append an array index @sa @ref operator/(const json_pointer&, const json_pointer&) for a binary operator @since version 3.6.0 */ json_pointer& operator/=(const json_pointer& ptr) { reference_tokens.insert(reference_tokens.end(), ptr.reference_tokens.begin(), ptr.reference_tokens.end()); return *this; } /*! @brief append an unescaped reference token at the end of this JSON pointer @param[in] token reference token to append @return JSON pointer with @a token appended without escaping @a token @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add} @complexity Amortized constant. @sa @ref operator/=(const json_pointer&) to append a JSON pointer @sa @ref operator/=(std::size_t) to append an array index @sa @ref operator/(const json_pointer&, std::size_t) for a binary operator @since version 3.6.0 */ json_pointer& operator/=(std::string token) { push_back(std::move(token)); return *this; } /*! @brief append an array index at the end of this JSON pointer @param[in] array_index array index ot append @return JSON pointer with @a array_index appended @liveexample{The example shows the usage of `operator/=`.,json_pointer__operator_add} @complexity Amortized constant. @sa @ref operator/=(const json_pointer&) to append a JSON pointer @sa @ref operator/=(std::string) to append a reference token @sa @ref operator/(const json_pointer&, std::string) for a binary operator @since version 3.6.0 */ json_pointer& operator/=(std::size_t array_index) { return *this /= std::to_string(array_index); } /*! @brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer @param[in] lhs JSON pointer @param[in] rhs JSON pointer @return a new JSON pointer with @a rhs appended to @a lhs @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary} @complexity Linear in the length of @a lhs and @a rhs. @sa @ref operator/=(const json_pointer&) to append a JSON pointer @since version 3.6.0 */ friend json_pointer operator/(const json_pointer& lhs, const json_pointer& rhs) { return json_pointer(lhs) /= rhs; } /*! @brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer @param[in] ptr JSON pointer @param[in] token reference token @return a new JSON pointer with unescaped @a token appended to @a ptr @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary} @complexity Linear in the length of @a ptr. @sa @ref operator/=(std::string) to append a reference token @since version 3.6.0 */ friend json_pointer operator/(const json_pointer& ptr, std::string token) { return json_pointer(ptr) /= std::move(token); } /*! @brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer @param[in] ptr JSON pointer @param[in] array_index array index @return a new JSON pointer with @a array_index appended to @a ptr @liveexample{The example shows the usage of `operator/`.,json_pointer__operator_add_binary} @complexity Linear in the length of @a ptr. @sa @ref operator/=(std::size_t) to append an array index @since version 3.6.0 */ friend json_pointer operator/(const json_pointer& ptr, std::size_t array_index) { return json_pointer(ptr) /= array_index; } /*! @brief returns the parent of this JSON pointer @return parent of this JSON pointer; in case this JSON pointer is the root, the root itself is returned @complexity Linear in the length of the JSON pointer. @liveexample{The example shows the result of `parent_pointer` for different JSON Pointers.,json_pointer__parent_pointer} @since version 3.6.0 */ json_pointer parent_pointer() const { if (empty()) { return *this; } json_pointer res = *this; res.pop_back(); return res; } /*! @brief remove last reference token @pre not `empty()` @liveexample{The example shows the usage of `pop_back`.,json_pointer__pop_back} @complexity Constant. @throw out_of_range.405 if JSON pointer has no parent @since version 3.6.0 */ void pop_back() { if (JSON_UNLIKELY(empty())) { JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent")); } reference_tokens.pop_back(); } /*! @brief return last reference token @pre not `empty()` @return last reference token @liveexample{The example shows the usage of `back`.,json_pointer__back} @complexity Constant. @throw out_of_range.405 if JSON pointer has no parent @since version 3.6.0 */ const std::string& back() { if (JSON_UNLIKELY(empty())) { JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent")); } return reference_tokens.back(); } /*! @brief append an unescaped token at the end of the reference pointer @param[in] token token to add @complexity Amortized constant. @liveexample{The example shows the result of `push_back` for different JSON Pointers.,json_pointer__push_back} @since version 3.6.0 */ void push_back(const std::string& token) { reference_tokens.push_back(token); } /// @copydoc push_back(const std::string&) void push_back(std::string&& token) { reference_tokens.push_back(std::move(token)); } /*! @brief return whether pointer points to the root document @return true iff the JSON pointer points to the root document @complexity Constant. @exceptionsafety No-throw guarantee: this function never throws exceptions. @liveexample{The example shows the result of `empty` for different JSON Pointers.,json_pointer__empty} @since version 3.6.0 */ bool empty() const noexcept { return reference_tokens.empty(); } private: /*! @param[in] s reference token to be converted into an array index @return integer representation of @a s @throw out_of_range.404 if string @a s could not be converted to an integer */ static int array_index(const std::string& s) { std::size_t processed_chars = 0; const int res = std::stoi(s, &processed_chars); // check if the string was completely read if (JSON_UNLIKELY(processed_chars != s.size())) { JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + s + "'")); } return res; } json_pointer top() const { if (JSON_UNLIKELY(empty())) { JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent")); } json_pointer result = *this; result.reference_tokens = {reference_tokens[0]}; return result; } /*! @brief create and return a reference to the pointed to value @complexity Linear in the number of reference tokens. @throw parse_error.109 if array index is not a number @throw type_error.313 if value cannot be unflattened */ BasicJsonType& get_and_create(BasicJsonType& j) const { using size_type = typename BasicJsonType::size_type; auto result = &j; // in case no reference tokens exist, return a reference to the JSON value // j which will be overwritten by a primitive value for (const auto& reference_token : reference_tokens) { switch (result->m_type) { case detail::value_t::null: { if (reference_token == "0") { // start a new array if reference token is 0 result = &result->operator[](0); } else { // start a new object otherwise result = &result->operator[](reference_token); } break; } case detail::value_t::object: { // create an entry in the object result = &result->operator[](reference_token); break; } case detail::value_t::array: { // create an entry in the array JSON_TRY { result = &result->operator[](static_cast<size_type>(array_index(reference_token))); } JSON_CATCH(std::invalid_argument&) { JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number")); } break; } /* The following code is only reached if there exists a reference token _and_ the current value is primitive. In this case, we have an error situation, because primitive values may only occur as single value; that is, with an empty list of reference tokens. */ default: JSON_THROW(detail::type_error::create(313, "invalid value to unflatten")); } } return *result; } /*! @brief return a reference to the pointed to value @note This version does not throw if a value is not present, but tries to create nested values instead. For instance, calling this function with pointer `"/this/that"` on a null value is equivalent to calling `operator[]("this").operator[]("that")` on that value, effectively changing the null value to an object. @param[in] ptr a JSON value @return reference to the JSON value pointed to by the JSON pointer @complexity Linear in the length of the JSON pointer. @throw parse_error.106 if an array index begins with '0' @throw parse_error.109 if an array index was not a number @throw out_of_range.404 if the JSON pointer can not be resolved */ BasicJsonType& get_unchecked(BasicJsonType* ptr) const { using size_type = typename BasicJsonType::size_type; for (const auto& reference_token : reference_tokens) { // convert null values to arrays or objects before continuing if (ptr->m_type == detail::value_t::null) { // check if reference token is a number const bool nums = std::all_of(reference_token.begin(), reference_token.end(), [](const char x) { return x >= '0' and x <= '9'; }); // change value to array for numbers or "-" or to object otherwise *ptr = (nums or reference_token == "-") ? detail::value_t::array : detail::value_t::object; } switch (ptr->m_type) { case detail::value_t::object: { // use unchecked object access ptr = &ptr->operator[](reference_token); break; } case detail::value_t::array: { // error condition (cf. RFC 6901, Sect. 4) if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0')) { JSON_THROW(detail::parse_error::create(106, 0, "array index '" + reference_token + "' must not begin with '0'")); } if (reference_token == "-") { // explicitly treat "-" as index beyond the end ptr = &ptr->operator[](ptr->m_value.array->size()); } else { // convert array index to number; unchecked access JSON_TRY { ptr = &ptr->operator[]( static_cast<size_type>(array_index(reference_token))); } JSON_CATCH(std::invalid_argument&) { JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number")); } } break; } default: JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'")); } } return *ptr; } /*! @throw parse_error.106 if an array index begins with '0' @throw parse_error.109 if an array index was not a number @throw out_of_range.402 if the array index '-' is used @throw out_of_range.404 if the JSON pointer can not be resolved */ BasicJsonType& get_checked(BasicJsonType* ptr) const { using size_type = typename BasicJsonType::size_type; for (const auto& reference_token : reference_tokens) { switch (ptr->m_type) { case detail::value_t::object: { // note: at performs range check ptr = &ptr->at(reference_token); break; } case detail::value_t::array: { if (JSON_UNLIKELY(reference_token == "-")) { // "-" always fails the range check JSON_THROW(detail::out_of_range::create(402, "array index '-' (" + std::to_string(ptr->m_value.array->size()) + ") is out of range")); } // error condition (cf. RFC 6901, Sect. 4) if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0')) { JSON_THROW(detail::parse_error::create(106, 0, "array index '" + reference_token + "' must not begin with '0'")); } // note: at performs range check JSON_TRY { ptr = &ptr->at(static_cast<size_type>(array_index(reference_token))); } JSON_CATCH(std::invalid_argument&) { JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number")); } break; } default: JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'")); } } return *ptr; } /*! @brief return a const reference to the pointed to value @param[in] ptr a JSON value @return const reference to the JSON value pointed to by the JSON pointer @throw parse_error.106 if an array index begins with '0' @throw parse_error.109 if an array index was not a number @throw out_of_range.402 if the array index '-' is used @throw out_of_range.404 if the JSON pointer can not be resolved */ const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const { using size_type = typename BasicJsonType::size_type; for (const auto& reference_token : reference_tokens) { switch (ptr->m_type) { case detail::value_t::object: { // use unchecked object access ptr = &ptr->operator[](reference_token); break; } case detail::value_t::array: { if (JSON_UNLIKELY(reference_token == "-")) { // "-" cannot be used for const access JSON_THROW(detail::out_of_range::create(402, "array index '-' (" + std::to_string(ptr->m_value.array->size()) + ") is out of range")); } // error condition (cf. RFC 6901, Sect. 4) if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0')) { JSON_THROW(detail::parse_error::create(106, 0, "array index '" + reference_token + "' must not begin with '0'")); } // use unchecked array access JSON_TRY { ptr = &ptr->operator[]( static_cast<size_type>(array_index(reference_token))); } JSON_CATCH(std::invalid_argument&) { JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number")); } break; } default: JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'")); } } return *ptr; } /*! @throw parse_error.106 if an array index begins with '0' @throw parse_error.109 if an array index was not a number @throw out_of_range.402 if the array index '-' is used @throw out_of_range.404 if the JSON pointer can not be resolved */ const BasicJsonType& get_checked(const BasicJsonType* ptr) const { using size_type = typename BasicJsonType::size_type; for (const auto& reference_token : reference_tokens) { switch (ptr->m_type) { case detail::value_t::object: { // note: at performs range check ptr = &ptr->at(reference_token); break; } case detail::value_t::array: { if (JSON_UNLIKELY(reference_token == "-")) { // "-" always fails the range check JSON_THROW(detail::out_of_range::create(402, "array index '-' (" + std::to_string(ptr->m_value.array->size()) + ") is out of range")); } // error condition (cf. RFC 6901, Sect. 4) if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0')) { JSON_THROW(detail::parse_error::create(106, 0, "array index '" + reference_token + "' must not begin with '0'")); } // note: at performs range check JSON_TRY { ptr = &ptr->at(static_cast<size_type>(array_index(reference_token))); } JSON_CATCH(std::invalid_argument&) { JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number")); } break; } default: JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'")); } } return *ptr; } /*! @brief split the string input to reference tokens @note This function is only called by the json_pointer constructor. All exceptions below are documented there. @throw parse_error.107 if the pointer is not empty or begins with '/' @throw parse_error.108 if character '~' is not followed by '0' or '1' */ static std::vector<std::string> split(const std::string& reference_string) { std::vector<std::string> result; // special case: empty reference string -> no reference tokens if (reference_string.empty()) { return result; } // check if nonempty reference string begins with slash if (JSON_UNLIKELY(reference_string[0] != '/')) { JSON_THROW(detail::parse_error::create(107, 1, "JSON pointer must be empty or begin with '/' - was: '" + reference_string + "'")); } // extract the reference tokens: // - slash: position of the last read slash (or end of string) // - start: position after the previous slash for ( // search for the first slash after the first character std::size_t slash = reference_string.find_first_of('/', 1), // set the beginning of the first reference token start = 1; // we can stop if start == 0 (if slash == std::string::npos) start != 0; // set the beginning of the next reference token // (will eventually be 0 if slash == std::string::npos) start = (slash == std::string::npos) ? 0 : slash + 1, // find next slash slash = reference_string.find_first_of('/', start)) { // use the text between the beginning of the reference token // (start) and the last slash (slash). auto reference_token = reference_string.substr(start, slash - start); // check reference tokens are properly escaped for (std::size_t pos = reference_token.find_first_of('~'); pos != std::string::npos; pos = reference_token.find_first_of('~', pos + 1)) { assert(reference_token[pos] == '~'); // ~ must be followed by 0 or 1 if (JSON_UNLIKELY(pos == reference_token.size() - 1 or (reference_token[pos + 1] != '0' and reference_token[pos + 1] != '1'))) { JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'")); } } // finally, store the reference token unescape(reference_token); result.push_back(reference_token); } return result; } /*! @brief replace all occurrences of a substring by another string @param[in,out] s the string to manipulate; changed so that all occurrences of @a f are replaced with @a t @param[in] f the substring to replace with @a t @param[in] t the string to replace @a f @pre The search string @a f must not be empty. **This precondition is enforced with an assertion.** @since version 2.0.0 */ static void replace_substring(std::string& s, const std::string& f, const std::string& t) { assert(not f.empty()); for (auto pos = s.find(f); // find first occurrence of f pos != std::string::npos; // make sure f was found s.replace(pos, f.size(), t), // replace with t, and pos = s.find(f, pos + t.size())) // find next occurrence of f {} } /// escape "~" to "~0" and "/" to "~1" static std::string escape(std::string s) { replace_substring(s, "~", "~0"); replace_substring(s, "/", "~1"); return s; } /// unescape "~1" to tilde and "~0" to slash (order is important!) static void unescape(std::string& s) { replace_substring(s, "~1", "/"); replace_substring(s, "~0", "~"); } /*! @param[in] reference_string the reference string to the current value @param[in] value the value to consider @param[in,out] result the result object to insert values to @note Empty objects or arrays are flattened to `null`. */ static void flatten(const std::string& reference_string, const BasicJsonType& value, BasicJsonType& result) { switch (value.m_type) { case detail::value_t::array: { if (value.m_value.array->empty()) { // flatten empty array as null result[reference_string] = nullptr; } else { // iterate array and use index as reference string for (std::size_t i = 0; i < value.m_value.array->size(); ++i) { flatten(reference_string + "/" + std::to_string(i), value.m_value.array->operator[](i), result); } } break; } case detail::value_t::object: { if (value.m_value.object->empty()) { // flatten empty object as null result[reference_string] = nullptr; } else { // iterate object and use keys as reference string for (const auto& element : *value.m_value.object) { flatten(reference_string + "/" + escape(element.first), element.second, result); } } break; } default: { // add primitive value with its reference string result[reference_string] = value; break; } } } /*! @param[in] value flattened JSON @return unflattened JSON @throw parse_error.109 if array index is not a number @throw type_error.314 if value is not an object @throw type_error.315 if object values are not primitive @throw type_error.313 if value cannot be unflattened */ static BasicJsonType unflatten(const BasicJsonType& value) { if (JSON_UNLIKELY(not value.is_object())) { JSON_THROW(detail::type_error::create(314, "only objects can be unflattened")); } BasicJsonType result; // iterate the JSON object values for (const auto& element : *value.m_value.object) { if (JSON_UNLIKELY(not element.second.is_primitive())) { JSON_THROW(detail::type_error::create(315, "values in object must be primitive")); } // assign value to reference pointed to by JSON pointer; Note that if // the JSON pointer is "" (i.e., points to the whole value), function // get_and_create returns a reference to result itself. An assignment // will then create a primitive value. json_pointer(element.first).get_and_create(result) = element.second; } return result; } /*! @brief compares two JSON pointers for equality @param[in] lhs JSON pointer to compare @param[in] rhs JSON pointer to compare @return whether @a lhs is equal to @a rhs @complexity Linear in the length of the JSON pointer @exceptionsafety No-throw guarantee: this function never throws exceptions. */ friend bool operator==(json_pointer const& lhs, json_pointer const& rhs) noexcept { return lhs.reference_tokens == rhs.reference_tokens; } /*! @brief compares two JSON pointers for inequality @param[in] lhs JSON pointer to compare @param[in] rhs JSON pointer to compare @return whether @a lhs is not equal @a rhs @complexity Linear in the length of the JSON pointer @exceptionsafety No-throw guarantee: this function never throws exceptions. */ friend bool operator!=(json_pointer const& lhs, json_pointer const& rhs) noexcept { return not (lhs == rhs); } /// the reference tokens std::vector<std::string> reference_tokens; }; } // namespace nlohmann // #include <nlohmann/detail/json_ref.hpp> #include <initializer_list> #include <utility> // #include <nlohmann/detail/meta/type_traits.hpp> namespace nlohmann { namespace detail { template<typename BasicJsonType> class json_ref { public: using value_type = BasicJsonType; json_ref(value_type&& value) : owned_value(std::move(value)), value_ref(&owned_value), is_rvalue(true) {} json_ref(const value_type& value) : value_ref(const_cast<value_type*>(&value)), is_rvalue(false) {} json_ref(std::initializer_list<json_ref> init) : owned_value(init), value_ref(&owned_value), is_rvalue(true) {} template < class... Args, enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 > json_ref(Args && ... args) : owned_value(std::forward<Args>(args)...), value_ref(&owned_value), is_rvalue(true) {} // class should be movable only json_ref(json_ref&&) = default; json_ref(const json_ref&) = delete; json_ref& operator=(const json_ref&) = delete; json_ref& operator=(json_ref&&) = delete; ~json_ref() = default; value_type moved_or_copied() const { if (is_rvalue) { return std::move(*value_ref); } return *value_ref; } value_type const& operator*() const { return *static_cast<value_type const*>(value_ref); } value_type const* operator->() const { return static_cast<value_type const*>(value_ref); } private: mutable value_type owned_value = nullptr; value_type* value_ref = nullptr; const bool is_rvalue; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/meta/cpp_future.hpp> // #include <nlohmann/detail/meta/type_traits.hpp> // #include <nlohmann/detail/output/binary_writer.hpp> #include <algorithm> // reverse #include <array> // array #include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t #include <cstring> // memcpy #include <limits> // numeric_limits #include <string> // string // #include <nlohmann/detail/input/binary_reader.hpp> // #include <nlohmann/detail/output/output_adapters.hpp> #include <algorithm> // copy #include <cstddef> // size_t #include <ios> // streamsize #include <iterator> // back_inserter #include <memory> // shared_ptr, make_shared #include <ostream> // basic_ostream #include <string> // basic_string #include <vector> // vector namespace nlohmann { namespace detail { /// abstract output adapter interface template<typename CharType> struct output_adapter_protocol { virtual void write_character(CharType c) = 0; virtual void write_characters(const CharType* s, std::size_t length) = 0; virtual ~output_adapter_protocol() = default; }; /// a type to simplify interfaces template<typename CharType> using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>; /// output adapter for byte vectors template<typename CharType> class output_vector_adapter : public output_adapter_protocol<CharType> { public: explicit output_vector_adapter(std::vector<CharType>& vec) noexcept : v(vec) {} void write_character(CharType c) override { v.push_back(c); } void write_characters(const CharType* s, std::size_t length) override { std::copy(s, s + length, std::back_inserter(v)); } private: std::vector<CharType>& v; }; /// output adapter for output streams template<typename CharType> class output_stream_adapter : public output_adapter_protocol<CharType> { public: explicit output_stream_adapter(std::basic_ostream<CharType>& s) noexcept : stream(s) {} void write_character(CharType c) override { stream.put(c); } void write_characters(const CharType* s, std::size_t length) override { stream.write(s, static_cast<std::streamsize>(length)); } private: std::basic_ostream<CharType>& stream; }; /// output adapter for basic_string template<typename CharType, typename StringType = std::basic_string<CharType>> class output_string_adapter : public output_adapter_protocol<CharType> { public: explicit output_string_adapter(StringType& s) noexcept : str(s) {} void write_character(CharType c) override { str.push_back(c); } void write_characters(const CharType* s, std::size_t length) override { str.append(s, length); } private: StringType& str; }; template<typename CharType, typename StringType = std::basic_string<CharType>> class output_adapter { public: output_adapter(std::vector<CharType>& vec) : oa(std::make_shared<output_vector_adapter<CharType>>(vec)) {} output_adapter(std::basic_ostream<CharType>& s) : oa(std::make_shared<output_stream_adapter<CharType>>(s)) {} output_adapter(StringType& s) : oa(std::make_shared<output_string_adapter<CharType, StringType>>(s)) {} operator output_adapter_t<CharType>() { return oa; } private: output_adapter_t<CharType> oa = nullptr; }; } // namespace detail } // namespace nlohmann namespace nlohmann { namespace detail { /////////////////// // binary writer // /////////////////// /*! @brief serialization to CBOR and MessagePack values */ template<typename BasicJsonType, typename CharType> class binary_writer { using string_t = typename BasicJsonType::string_t; public: /*! @brief create a binary writer @param[in] adapter output adapter to write to */ explicit binary_writer(output_adapter_t<CharType> adapter) : oa(adapter) { assert(oa); } /*! @param[in] j JSON value to serialize @pre j.type() == value_t::object */ void write_bson(const BasicJsonType& j) { switch (j.type()) { case value_t::object: { write_bson_object(*j.m_value.object); break; } default: { JSON_THROW(type_error::create(317, "to serialize to BSON, top-level type must be object, but is " + std::string(j.type_name()))); } } } /*! @param[in] j JSON value to serialize */ void write_cbor(const BasicJsonType& j) { switch (j.type()) { case value_t::null: { oa->write_character(to_char_type(0xF6)); break; } case value_t::boolean: { oa->write_character(j.m_value.boolean ? to_char_type(0xF5) : to_char_type(0xF4)); break; } case value_t::number_integer: { if (j.m_value.number_integer >= 0) { // CBOR does not differentiate between positive signed // integers and unsigned integers. Therefore, we used the // code from the value_t::number_unsigned case here. if (j.m_value.number_integer <= 0x17) { write_number(static_cast<std::uint8_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)()) { oa->write_character(to_char_type(0x18)); write_number(static_cast<std::uint8_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer <= (std::numeric_limits<std::uint16_t>::max)()) { oa->write_character(to_char_type(0x19)); write_number(static_cast<std::uint16_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer <= (std::numeric_limits<std::uint32_t>::max)()) { oa->write_character(to_char_type(0x1A)); write_number(static_cast<std::uint32_t>(j.m_value.number_integer)); } else { oa->write_character(to_char_type(0x1B)); write_number(static_cast<std::uint64_t>(j.m_value.number_integer)); } } else { // The conversions below encode the sign in the first // byte, and the value is converted to a positive number. const auto positive_number = -1 - j.m_value.number_integer; if (j.m_value.number_integer >= -24) { write_number(static_cast<std::uint8_t>(0x20 + positive_number)); } else if (positive_number <= (std::numeric_limits<std::uint8_t>::max)()) { oa->write_character(to_char_type(0x38)); write_number(static_cast<std::uint8_t>(positive_number)); } else if (positive_number <= (std::numeric_limits<std::uint16_t>::max)()) { oa->write_character(to_char_type(0x39)); write_number(static_cast<std::uint16_t>(positive_number)); } else if (positive_number <= (std::numeric_limits<std::uint32_t>::max)()) { oa->write_character(to_char_type(0x3A)); write_number(static_cast<std::uint32_t>(positive_number)); } else { oa->write_character(to_char_type(0x3B)); write_number(static_cast<std::uint64_t>(positive_number)); } } break; } case value_t::number_unsigned: { if (j.m_value.number_unsigned <= 0x17) { write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)()) { oa->write_character(to_char_type(0x18)); write_number(static_cast<std::uint8_t>(j.m_value.number_unsigned)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)()) { oa->write_character(to_char_type(0x19)); write_number(static_cast<std::uint16_t>(j.m_value.number_unsigned)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)()) { oa->write_character(to_char_type(0x1A)); write_number(static_cast<std::uint32_t>(j.m_value.number_unsigned)); } else { oa->write_character(to_char_type(0x1B)); write_number(static_cast<std::uint64_t>(j.m_value.number_unsigned)); } break; } case value_t::number_float: { oa->write_character(get_cbor_float_prefix(j.m_value.number_float)); write_number(j.m_value.number_float); break; } case value_t::string: { // step 1: write control byte and the string length const auto N = j.m_value.string->size(); if (N <= 0x17) { write_number(static_cast<std::uint8_t>(0x60 + N)); } else if (N <= (std::numeric_limits<std::uint8_t>::max)()) { oa->write_character(to_char_type(0x78)); write_number(static_cast<std::uint8_t>(N)); } else if (N <= (std::numeric_limits<std::uint16_t>::max)()) { oa->write_character(to_char_type(0x79)); write_number(static_cast<std::uint16_t>(N)); } else if (N <= (std::numeric_limits<std::uint32_t>::max)()) { oa->write_character(to_char_type(0x7A)); write_number(static_cast<std::uint32_t>(N)); } // LCOV_EXCL_START else if (N <= (std::numeric_limits<std::uint64_t>::max)()) { oa->write_character(to_char_type(0x7B)); write_number(static_cast<std::uint64_t>(N)); } // LCOV_EXCL_STOP // step 2: write the string oa->write_characters( reinterpret_cast<const CharType*>(j.m_value.string->c_str()), j.m_value.string->size()); break; } case value_t::array: { // step 1: write control byte and the array size const auto N = j.m_value.array->size(); if (N <= 0x17) { write_number(static_cast<std::uint8_t>(0x80 + N)); } else if (N <= (std::numeric_limits<std::uint8_t>::max)()) { oa->write_character(to_char_type(0x98)); write_number(static_cast<std::uint8_t>(N)); } else if (N <= (std::numeric_limits<std::uint16_t>::max)()) { oa->write_character(to_char_type(0x99)); write_number(static_cast<std::uint16_t>(N)); } else if (N <= (std::numeric_limits<std::uint32_t>::max)()) { oa->write_character(to_char_type(0x9A)); write_number(static_cast<std::uint32_t>(N)); } // LCOV_EXCL_START else if (N <= (std::numeric_limits<std::uint64_t>::max)()) { oa->write_character(to_char_type(0x9B)); write_number(static_cast<std::uint64_t>(N)); } // LCOV_EXCL_STOP // step 2: write each element for (const auto& el : *j.m_value.array) { write_cbor(el); } break; } case value_t::object: { // step 1: write control byte and the object size const auto N = j.m_value.object->size(); if (N <= 0x17) { write_number(static_cast<std::uint8_t>(0xA0 + N)); } else if (N <= (std::numeric_limits<std::uint8_t>::max)()) { oa->write_character(to_char_type(0xB8)); write_number(static_cast<std::uint8_t>(N)); } else if (N <= (std::numeric_limits<std::uint16_t>::max)()) { oa->write_character(to_char_type(0xB9)); write_number(static_cast<std::uint16_t>(N)); } else if (N <= (std::numeric_limits<std::uint32_t>::max)()) { oa->write_character(to_char_type(0xBA)); write_number(static_cast<std::uint32_t>(N)); } // LCOV_EXCL_START else if (N <= (std::numeric_limits<std::uint64_t>::max)()) { oa->write_character(to_char_type(0xBB)); write_number(static_cast<std::uint64_t>(N)); } // LCOV_EXCL_STOP // step 2: write each element for (const auto& el : *j.m_value.object) { write_cbor(el.first); write_cbor(el.second); } break; } default: break; } } /*! @param[in] j JSON value to serialize */ void write_msgpack(const BasicJsonType& j) { switch (j.type()) { case value_t::null: // nil { oa->write_character(to_char_type(0xC0)); break; } case value_t::boolean: // true and false { oa->write_character(j.m_value.boolean ? to_char_type(0xC3) : to_char_type(0xC2)); break; } case value_t::number_integer: { if (j.m_value.number_integer >= 0) { // MessagePack does not differentiate between positive // signed integers and unsigned integers. Therefore, we used // the code from the value_t::number_unsigned case here. if (j.m_value.number_unsigned < 128) { // positive fixnum write_number(static_cast<std::uint8_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)()) { // uint 8 oa->write_character(to_char_type(0xCC)); write_number(static_cast<std::uint8_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)()) { // uint 16 oa->write_character(to_char_type(0xCD)); write_number(static_cast<std::uint16_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)()) { // uint 32 oa->write_character(to_char_type(0xCE)); write_number(static_cast<std::uint32_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)()) { // uint 64 oa->write_character(to_char_type(0xCF)); write_number(static_cast<std::uint64_t>(j.m_value.number_integer)); } } else { if (j.m_value.number_integer >= -32) { // negative fixnum write_number(static_cast<std::int8_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer >= (std::numeric_limits<std::int8_t>::min)() and j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)()) { // int 8 oa->write_character(to_char_type(0xD0)); write_number(static_cast<std::int8_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer >= (std::numeric_limits<std::int16_t>::min)() and j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)()) { // int 16 oa->write_character(to_char_type(0xD1)); write_number(static_cast<std::int16_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer >= (std::numeric_limits<std::int32_t>::min)() and j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)()) { // int 32 oa->write_character(to_char_type(0xD2)); write_number(static_cast<std::int32_t>(j.m_value.number_integer)); } else if (j.m_value.number_integer >= (std::numeric_limits<std::int64_t>::min)() and j.m_value.number_integer <= (std::numeric_limits<std::int64_t>::max)()) { // int 64 oa->write_character(to_char_type(0xD3)); write_number(static_cast<std::int64_t>(j.m_value.number_integer)); } } break; } case value_t::number_unsigned: { if (j.m_value.number_unsigned < 128) { // positive fixnum write_number(static_cast<std::uint8_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)()) { // uint 8 oa->write_character(to_char_type(0xCC)); write_number(static_cast<std::uint8_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)()) { // uint 16 oa->write_character(to_char_type(0xCD)); write_number(static_cast<std::uint16_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)()) { // uint 32 oa->write_character(to_char_type(0xCE)); write_number(static_cast<std::uint32_t>(j.m_value.number_integer)); } else if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)()) { // uint 64 oa->write_character(to_char_type(0xCF)); write_number(static_cast<std::uint64_t>(j.m_value.number_integer)); } break; } case value_t::number_float: { oa->write_character(get_msgpack_float_prefix(j.m_value.number_float)); write_number(j.m_value.number_float); break; } case value_t::string: { // step 1: write control byte and the string length const auto N = j.m_value.string->size(); if (N <= 31) { // fixstr write_number(static_cast<std::uint8_t>(0xA0 | N)); } else if (N <= (std::numeric_limits<std::uint8_t>::max)()) { // str 8 oa->write_character(to_char_type(0xD9)); write_number(static_cast<std::uint8_t>(N)); } else if (N <= (std::numeric_limits<std::uint16_t>::max)()) { // str 16 oa->write_character(to_char_type(0xDA)); write_number(static_cast<std::uint16_t>(N)); } else if (N <= (std::numeric_limits<std::uint32_t>::max)()) { // str 32 oa->write_character(to_char_type(0xDB)); write_number(static_cast<std::uint32_t>(N)); } // step 2: write the string oa->write_characters( reinterpret_cast<const CharType*>(j.m_value.string->c_str()), j.m_value.string->size()); break; } case value_t::array: { // step 1: write control byte and the array size const auto N = j.m_value.array->size(); if (N <= 15) { // fixarray write_number(static_cast<std::uint8_t>(0x90 | N)); } else if (N <= (std::numeric_limits<std::uint16_t>::max)()) { // array 16 oa->write_character(to_char_type(0xDC)); write_number(static_cast<std::uint16_t>(N)); } else if (N <= (std::numeric_limits<std::uint32_t>::max)()) { // array 32 oa->write_character(to_char_type(0xDD)); write_number(static_cast<std::uint32_t>(N)); } // step 2: write each element for (const auto& el : *j.m_value.array) { write_msgpack(el); } break; } case value_t::object: { // step 1: write control byte and the object size const auto N = j.m_value.object->size(); if (N <= 15) { // fixmap write_number(static_cast<std::uint8_t>(0x80 | (N & 0xF))); } else if (N <= (std::numeric_limits<std::uint16_t>::max)()) { // map 16 oa->write_character(to_char_type(0xDE)); write_number(static_cast<std::uint16_t>(N)); } else if (N <= (std::numeric_limits<std::uint32_t>::max)()) { // map 32 oa->write_character(to_char_type(0xDF)); write_number(static_cast<std::uint32_t>(N)); } // step 2: write each element for (const auto& el : *j.m_value.object) { write_msgpack(el.first); write_msgpack(el.second); } break; } default: break; } } /*! @param[in] j JSON value to serialize @param[in] use_count whether to use '#' prefixes (optimized format) @param[in] use_type whether to use '$' prefixes (optimized format) @param[in] add_prefix whether prefixes need to be used for this value */ void write_ubjson(const BasicJsonType& j, const bool use_count, const bool use_type, const bool add_prefix = true) { switch (j.type()) { case value_t::null: { if (add_prefix) { oa->write_character(to_char_type('Z')); } break; } case value_t::boolean: { if (add_prefix) { oa->write_character(j.m_value.boolean ? to_char_type('T') : to_char_type('F')); } break; } case value_t::number_integer: { write_number_with_ubjson_prefix(j.m_value.number_integer, add_prefix); break; } case value_t::number_unsigned: { write_number_with_ubjson_prefix(j.m_value.number_unsigned, add_prefix); break; } case value_t::number_float: { write_number_with_ubjson_prefix(j.m_value.number_float, add_prefix); break; } case value_t::string: { if (add_prefix) { oa->write_character(to_char_type('S')); } write_number_with_ubjson_prefix(j.m_value.string->size(), true); oa->write_characters( reinterpret_cast<const CharType*>(j.m_value.string->c_str()), j.m_value.string->size()); break; } case value_t::array: { if (add_prefix) { oa->write_character(to_char_type('[')); } bool prefix_required = true; if (use_type and not j.m_value.array->empty()) { assert(use_count); const CharType first_prefix = ubjson_prefix(j.front()); const bool same_prefix = std::all_of(j.begin() + 1, j.end(), [this, first_prefix](const BasicJsonType & v) { return ubjson_prefix(v) == first_prefix; }); if (same_prefix) { prefix_required = false; oa->write_character(to_char_type('$')); oa->write_character(first_prefix); } } if (use_count) { oa->write_character(to_char_type('#')); write_number_with_ubjson_prefix(j.m_value.array->size(), true); } for (const auto& el : *j.m_value.array) { write_ubjson(el, use_count, use_type, prefix_required); } if (not use_count) { oa->write_character(to_char_type(']')); } break; } case value_t::object: { if (add_prefix) { oa->write_character(to_char_type('{')); } bool prefix_required = true; if (use_type and not j.m_value.object->empty()) { assert(use_count); const CharType first_prefix = ubjson_prefix(j.front()); const bool same_prefix = std::all_of(j.begin(), j.end(), [this, first_prefix](const BasicJsonType & v) { return ubjson_prefix(v) == first_prefix; }); if (same_prefix) { prefix_required = false; oa->write_character(to_char_type('$')); oa->write_character(first_prefix); } } if (use_count) { oa->write_character(to_char_type('#')); write_number_with_ubjson_prefix(j.m_value.object->size(), true); } for (const auto& el : *j.m_value.object) { write_number_with_ubjson_prefix(el.first.size(), true); oa->write_characters( reinterpret_cast<const CharType*>(el.first.c_str()), el.first.size()); write_ubjson(el.second, use_count, use_type, prefix_required); } if (not use_count) { oa->write_character(to_char_type('}')); } break; } default: break; } } private: ////////// // BSON // ////////// /*! @return The size of a BSON document entry header, including the id marker and the entry name size (and its null-terminator). */ static std::size_t calc_bson_entry_header_size(const string_t& name) { const auto it = name.find(static_cast<typename string_t::value_type>(0)); if (JSON_UNLIKELY(it != BasicJsonType::string_t::npos)) { JSON_THROW(out_of_range::create(409, "BSON key cannot contain code point U+0000 (at byte " + std::to_string(it) + ")")); } return /*id*/ 1ul + name.size() + /*zero-terminator*/1u; } /*! @brief Writes the given @a element_type and @a name to the output adapter */ void write_bson_entry_header(const string_t& name, const std::uint8_t element_type) { oa->write_character(to_char_type(element_type)); // boolean oa->write_characters( reinterpret_cast<const CharType*>(name.c_str()), name.size() + 1u); } /*! @brief Writes a BSON element with key @a name and boolean value @a value */ void write_bson_boolean(const string_t& name, const bool value) { write_bson_entry_header(name, 0x08); oa->write_character(value ? to_char_type(0x01) : to_char_type(0x00)); } /*! @brief Writes a BSON element with key @a name and double value @a value */ void write_bson_double(const string_t& name, const double value) { write_bson_entry_header(name, 0x01); write_number<double, true>(value); } /*! @return The size of the BSON-encoded string in @a value */ static std::size_t calc_bson_string_size(const string_t& value) { return sizeof(std::int32_t) + value.size() + 1ul; } /*! @brief Writes a BSON element with key @a name and string value @a value */ void write_bson_string(const string_t& name, const string_t& value) { write_bson_entry_header(name, 0x02); write_number<std::int32_t, true>(static_cast<std::int32_t>(value.size() + 1ul)); oa->write_characters( reinterpret_cast<const CharType*>(value.c_str()), value.size() + 1); } /*! @brief Writes a BSON element with key @a name and null value */ void write_bson_null(const string_t& name) { write_bson_entry_header(name, 0x0A); } /*! @return The size of the BSON-encoded integer @a value */ static std::size_t calc_bson_integer_size(const std::int64_t value) { return (std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)() ? sizeof(std::int32_t) : sizeof(std::int64_t); } /*! @brief Writes a BSON element with key @a name and integer @a value */ void write_bson_integer(const string_t& name, const std::int64_t value) { if ((std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)()) { write_bson_entry_header(name, 0x10); // int32 write_number<std::int32_t, true>(static_cast<std::int32_t>(value)); } else { write_bson_entry_header(name, 0x12); // int64 write_number<std::int64_t, true>(static_cast<std::int64_t>(value)); } } /*! @return The size of the BSON-encoded unsigned integer in @a j */ static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept { return (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)())) ? sizeof(std::int32_t) : sizeof(std::int64_t); } /*! @brief Writes a BSON element with key @a name and unsigned @a value */ void write_bson_unsigned(const string_t& name, const std::uint64_t value) { if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)())) { write_bson_entry_header(name, 0x10 /* int32 */); write_number<std::int32_t, true>(static_cast<std::int32_t>(value)); } else if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)())) { write_bson_entry_header(name, 0x12 /* int64 */); write_number<std::int64_t, true>(static_cast<std::int64_t>(value)); } else { JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(value) + " cannot be represented by BSON as it does not fit int64")); } } /*! @brief Writes a BSON element with key @a name and object @a value */ void write_bson_object_entry(const string_t& name, const typename BasicJsonType::object_t& value) { write_bson_entry_header(name, 0x03); // object write_bson_object(value); } /*! @return The size of the BSON-encoded array @a value */ static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t& value) { std::size_t embedded_document_size = 0ul; std::size_t array_index = 0ul; for (const auto& el : value) { embedded_document_size += calc_bson_element_size(std::to_string(array_index++), el); } return sizeof(std::int32_t) + embedded_document_size + 1ul; } /*! @brief Writes a BSON element with key @a name and array @a value */ void write_bson_array(const string_t& name, const typename BasicJsonType::array_t& value) { write_bson_entry_header(name, 0x04); // array write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_array_size(value))); std::size_t array_index = 0ul; for (const auto& el : value) { write_bson_element(std::to_string(array_index++), el); } oa->write_character(to_char_type(0x00)); } /*! @brief Calculates the size necessary to serialize the JSON value @a j with its @a name @return The calculated size for the BSON document entry for @a j with the given @a name. */ static std::size_t calc_bson_element_size(const string_t& name, const BasicJsonType& j) { const auto header_size = calc_bson_entry_header_size(name); switch (j.type()) { case value_t::object: return header_size + calc_bson_object_size(*j.m_value.object); case value_t::array: return header_size + calc_bson_array_size(*j.m_value.array); case value_t::boolean: return header_size + 1ul; case value_t::number_float: return header_size + 8ul; case value_t::number_integer: return header_size + calc_bson_integer_size(j.m_value.number_integer); case value_t::number_unsigned: return header_size + calc_bson_unsigned_size(j.m_value.number_unsigned); case value_t::string: return header_size + calc_bson_string_size(*j.m_value.string); case value_t::null: return header_size + 0ul; // LCOV_EXCL_START default: assert(false); return 0ul; // LCOV_EXCL_STOP } } /*! @brief Serializes the JSON value @a j to BSON and associates it with the key @a name. @param name The name to associate with the JSON entity @a j within the current BSON document @return The size of the BSON entry */ void write_bson_element(const string_t& name, const BasicJsonType& j) { switch (j.type()) { case value_t::object: return write_bson_object_entry(name, *j.m_value.object); case value_t::array: return write_bson_array(name, *j.m_value.array); case value_t::boolean: return write_bson_boolean(name, j.m_value.boolean); case value_t::number_float: return write_bson_double(name, j.m_value.number_float); case value_t::number_integer: return write_bson_integer(name, j.m_value.number_integer); case value_t::number_unsigned: return write_bson_unsigned(name, j.m_value.number_unsigned); case value_t::string: return write_bson_string(name, *j.m_value.string); case value_t::null: return write_bson_null(name); // LCOV_EXCL_START default: assert(false); return; // LCOV_EXCL_STOP } } /*! @brief Calculates the size of the BSON serialization of the given JSON-object @a j. @param[in] j JSON value to serialize @pre j.type() == value_t::object */ static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t& value) { std::size_t document_size = std::accumulate(value.begin(), value.end(), 0ul, [](size_t result, const typename BasicJsonType::object_t::value_type & el) { return result += calc_bson_element_size(el.first, el.second); }); return sizeof(std::int32_t) + document_size + 1ul; } /*! @param[in] j JSON value to serialize @pre j.type() == value_t::object */ void write_bson_object(const typename BasicJsonType::object_t& value) { write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_object_size(value))); for (const auto& el : value) { write_bson_element(el.first, el.second); } oa->write_character(to_char_type(0x00)); } ////////// // CBOR // ////////// static constexpr CharType get_cbor_float_prefix(float /*unused*/) { return to_char_type(0xFA); // Single-Precision Float } static constexpr CharType get_cbor_float_prefix(double /*unused*/) { return to_char_type(0xFB); // Double-Precision Float } ///////////// // MsgPack // ///////////// static constexpr CharType get_msgpack_float_prefix(float /*unused*/) { return to_char_type(0xCA); // float 32 } static constexpr CharType get_msgpack_float_prefix(double /*unused*/) { return to_char_type(0xCB); // float 64 } //////////// // UBJSON // //////////// // UBJSON: write number (floating point) template<typename NumberType, typename std::enable_if< std::is_floating_point<NumberType>::value, int>::type = 0> void write_number_with_ubjson_prefix(const NumberType n, const bool add_prefix) { if (add_prefix) { oa->write_character(get_ubjson_float_prefix(n)); } write_number(n); } // UBJSON: write number (unsigned integer) template<typename NumberType, typename std::enable_if< std::is_unsigned<NumberType>::value, int>::type = 0> void write_number_with_ubjson_prefix(const NumberType n, const bool add_prefix) { if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)())) { if (add_prefix) { oa->write_character(to_char_type('i')); // int8 } write_number(static_cast<std::uint8_t>(n)); } else if (n <= (std::numeric_limits<std::uint8_t>::max)()) { if (add_prefix) { oa->write_character(to_char_type('U')); // uint8 } write_number(static_cast<std::uint8_t>(n)); } else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)())) { if (add_prefix) { oa->write_character(to_char_type('I')); // int16 } write_number(static_cast<std::int16_t>(n)); } else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)())) { if (add_prefix) { oa->write_character(to_char_type('l')); // int32 } write_number(static_cast<std::int32_t>(n)); } else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)())) { if (add_prefix) { oa->write_character(to_char_type('L')); // int64 } write_number(static_cast<std::int64_t>(n)); } else { JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64")); } } // UBJSON: write number (signed integer) template<typename NumberType, typename std::enable_if< std::is_signed<NumberType>::value and not std::is_floating_point<NumberType>::value, int>::type = 0> void write_number_with_ubjson_prefix(const NumberType n, const bool add_prefix) { if ((std::numeric_limits<std::int8_t>::min)() <= n and n <= (std::numeric_limits<std::int8_t>::max)()) { if (add_prefix) { oa->write_character(to_char_type('i')); // int8 } write_number(static_cast<std::int8_t>(n)); } else if (static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::min)()) <= n and n <= static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::max)())) { if (add_prefix) { oa->write_character(to_char_type('U')); // uint8 } write_number(static_cast<std::uint8_t>(n)); } else if ((std::numeric_limits<std::int16_t>::min)() <= n and n <= (std::numeric_limits<std::int16_t>::max)()) { if (add_prefix) { oa->write_character(to_char_type('I')); // int16 } write_number(static_cast<std::int16_t>(n)); } else if ((std::numeric_limits<std::int32_t>::min)() <= n and n <= (std::numeric_limits<std::int32_t>::max)()) { if (add_prefix) { oa->write_character(to_char_type('l')); // int32 } write_number(static_cast<std::int32_t>(n)); } else if ((std::numeric_limits<std::int64_t>::min)() <= n and n <= (std::numeric_limits<std::int64_t>::max)()) { if (add_prefix) { oa->write_character(to_char_type('L')); // int64 } write_number(static_cast<std::int64_t>(n)); } // LCOV_EXCL_START else { JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64")); } // LCOV_EXCL_STOP } /*! @brief determine the type prefix of container values @note This function does not need to be 100% accurate when it comes to integer limits. In case a number exceeds the limits of int64_t, this will be detected by a later call to function write_number_with_ubjson_prefix. Therefore, we return 'L' for any value that does not fit the previous limits. */ CharType ubjson_prefix(const BasicJsonType& j) const noexcept { switch (j.type()) { case value_t::null: return 'Z'; case value_t::boolean: return j.m_value.boolean ? 'T' : 'F'; case value_t::number_integer: { if ((std::numeric_limits<std::int8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)()) { return 'i'; } if ((std::numeric_limits<std::uint8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)()) { return 'U'; } if ((std::numeric_limits<std::int16_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)()) { return 'I'; } if ((std::numeric_limits<std::int32_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)()) { return 'l'; } // no check and assume int64_t (see note above) return 'L'; } case value_t::number_unsigned: { if (j.m_value.number_unsigned <= (std::numeric_limits<std::int8_t>::max)()) { return 'i'; } if (j.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)()) { return 'U'; } if (j.m_value.number_unsigned <= (std::numeric_limits<std::int16_t>::max)()) { return 'I'; } if (j.m_value.number_unsigned <= (std::numeric_limits<std::int32_t>::max)()) { return 'l'; } // no check and assume int64_t (see note above) return 'L'; } case value_t::number_float: return get_ubjson_float_prefix(j.m_value.number_float); case value_t::string: return 'S'; case value_t::array: return '['; case value_t::object: return '{'; default: // discarded values return 'N'; } } static constexpr CharType get_ubjson_float_prefix(float /*unused*/) { return 'd'; // float 32 } static constexpr CharType get_ubjson_float_prefix(double /*unused*/) { return 'D'; // float 64 } /////////////////////// // Utility functions // /////////////////////// /* @brief write a number to output input @param[in] n number of type @a NumberType @tparam NumberType the type of the number @tparam OutputIsLittleEndian Set to true if output data is required to be little endian @note This function needs to respect the system's endianess, because bytes in CBOR, MessagePack, and UBJSON are stored in network order (big endian) and therefore need reordering on little endian systems. */ template<typename NumberType, bool OutputIsLittleEndian = false> void write_number(const NumberType n) { // step 1: write number to array of length NumberType std::array<CharType, sizeof(NumberType)> vec; std::memcpy(vec.data(), &n, sizeof(NumberType)); // step 2: write array to output (with possible reordering) if (is_little_endian != OutputIsLittleEndian) { // reverse byte order prior to conversion if necessary std::reverse(vec.begin(), vec.end()); } oa->write_characters(vec.data(), sizeof(NumberType)); } public: // The following to_char_type functions are implement the conversion // between uint8_t and CharType. In case CharType is not unsigned, // such a conversion is required to allow values greater than 128. // See <https://github.com/nlohmann/json/issues/1286> for a discussion. template < typename C = CharType, enable_if_t < std::is_signed<C>::value and std::is_signed<char>::value > * = nullptr > static constexpr CharType to_char_type(std::uint8_t x) noexcept { return *reinterpret_cast<char*>(&x); } template < typename C = CharType, enable_if_t < std::is_signed<C>::value and std::is_unsigned<char>::value > * = nullptr > static CharType to_char_type(std::uint8_t x) noexcept { static_assert(sizeof(std::uint8_t) == sizeof(CharType), "size of CharType must be equal to std::uint8_t"); static_assert(std::is_pod<CharType>::value, "CharType must be POD"); CharType result; std::memcpy(&result, &x, sizeof(x)); return result; } template<typename C = CharType, enable_if_t<std::is_unsigned<C>::value>* = nullptr> static constexpr CharType to_char_type(std::uint8_t x) noexcept { return x; } template < typename InputCharType, typename C = CharType, enable_if_t < std::is_signed<C>::value and std::is_signed<char>::value and std::is_same<char, typename std::remove_cv<InputCharType>::type>::value > * = nullptr > static constexpr CharType to_char_type(InputCharType x) noexcept { return x; } private: /// whether we can assume little endianess const bool is_little_endian = binary_reader<BasicJsonType>::little_endianess(); /// the output output_adapter_t<CharType> oa = nullptr; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/output/output_adapters.hpp> // #include <nlohmann/detail/output/serializer.hpp> #include <algorithm> // reverse, remove, fill, find, none_of #include <array> // array #include <cassert> // assert #include <ciso646> // and, or #include <clocale> // localeconv, lconv #include <cmath> // labs, isfinite, isnan, signbit #include <cstddef> // size_t, ptrdiff_t #include <cstdint> // uint8_t #include <cstdio> // snprintf #include <limits> // numeric_limits #include <string> // string #include <type_traits> // is_same #include <utility> // move // #include <nlohmann/detail/conversions/to_chars.hpp> #include <array> // array #include <cassert> // assert #include <ciso646> // or, and, not #include <cmath> // signbit, isfinite #include <cstdint> // intN_t, uintN_t #include <cstring> // memcpy, memmove #include <limits> // numeric_limits #include <type_traits> // conditional namespace nlohmann { namespace detail { /*! @brief implements the Grisu2 algorithm for binary to decimal floating-point conversion. This implementation is a slightly modified version of the reference implementation which may be obtained from http://florian.loitsch.com/publications (bench.tar.gz). The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch. For a detailed description of the algorithm see: [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming Language Design and Implementation, PLDI 2010 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately", Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation, PLDI 1996 */ namespace dtoa_impl { template <typename Target, typename Source> Target reinterpret_bits(const Source source) { static_assert(sizeof(Target) == sizeof(Source), "size mismatch"); Target target; std::memcpy(&target, &source, sizeof(Source)); return target; } struct diyfp // f * 2^e { static constexpr int kPrecision = 64; // = q std::uint64_t f = 0; int e = 0; constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {} /*! @brief returns x - y @pre x.e == y.e and x.f >= y.f */ static diyfp sub(const diyfp& x, const diyfp& y) noexcept { assert(x.e == y.e); assert(x.f >= y.f); return {x.f - y.f, x.e}; } /*! @brief returns x * y @note The result is rounded. (Only the upper q bits are returned.) */ static diyfp mul(const diyfp& x, const diyfp& y) noexcept { static_assert(kPrecision == 64, "internal error"); // Computes: // f = round((x.f * y.f) / 2^q) // e = x.e + y.e + q // Emulate the 64-bit * 64-bit multiplication: // // p = u * v // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi) // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi ) // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 ) // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3) // = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H ) // // (Since Q might be larger than 2^32 - 1) // // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H) // // (Q_hi + H does not overflow a 64-bit int) // // = p_lo + 2^64 p_hi const std::uint64_t u_lo = x.f & 0xFFFFFFFFu; const std::uint64_t u_hi = x.f >> 32u; const std::uint64_t v_lo = y.f & 0xFFFFFFFFu; const std::uint64_t v_hi = y.f >> 32u; const std::uint64_t p0 = u_lo * v_lo; const std::uint64_t p1 = u_lo * v_hi; const std::uint64_t p2 = u_hi * v_lo; const std::uint64_t p3 = u_hi * v_hi; const std::uint64_t p0_hi = p0 >> 32u; const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu; const std::uint64_t p1_hi = p1 >> 32u; const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu; const std::uint64_t p2_hi = p2 >> 32u; std::uint64_t Q = p0_hi + p1_lo + p2_lo; // The full product might now be computed as // // p_hi = p3 + p2_hi + p1_hi + (Q >> 32) // p_lo = p0_lo + (Q << 32) // // But in this particular case here, the full p_lo is not required. // Effectively we only need to add the highest bit in p_lo to p_hi (and // Q_hi + 1 does not overflow). Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u); return {h, x.e + y.e + 64}; } /*! @brief normalize x such that the significand is >= 2^(q-1) @pre x.f != 0 */ static diyfp normalize(diyfp x) noexcept { assert(x.f != 0); while ((x.f >> 63u) == 0) { x.f <<= 1u; x.e--; } return x; } /*! @brief normalize x such that the result has the exponent E @pre e >= x.e and the upper e - x.e bits of x.f must be zero. */ static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept { const int delta = x.e - target_exponent; assert(delta >= 0); assert(((x.f << delta) >> delta) == x.f); return {x.f << delta, target_exponent}; } }; struct boundaries { diyfp w; diyfp minus; diyfp plus; }; /*! Compute the (normalized) diyfp representing the input number 'value' and its boundaries. @pre value must be finite and positive */ template <typename FloatType> boundaries compute_boundaries(FloatType value) { assert(std::isfinite(value)); assert(value > 0); // Convert the IEEE representation into a diyfp. // // If v is denormal: // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1)) // If v is normalized: // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1)) static_assert(std::numeric_limits<FloatType>::is_iec559, "internal error: dtoa_short requires an IEEE-754 floating-point implementation"); constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit) constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1); constexpr int kMinExp = 1 - kBias; constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1) using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type; const std::uint64_t bits = reinterpret_bits<bits_type>(value); const std::uint64_t E = bits >> (kPrecision - 1); const std::uint64_t F = bits & (kHiddenBit - 1); const bool is_denormal = E == 0; const diyfp v = is_denormal ? diyfp(F, kMinExp) : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias); // Compute the boundaries m- and m+ of the floating-point value // v = f * 2^e. // // Determine v- and v+, the floating-point predecessor and successor if v, // respectively. // // v- = v - 2^e if f != 2^(p-1) or e == e_min (A) // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B) // // v+ = v + 2^e // // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_ // between m- and m+ round to v, regardless of how the input rounding // algorithm breaks ties. // // ---+-------------+-------------+-------------+-------------+--- (A) // v- m- v m+ v+ // // -----------------+------+------+-------------+-------------+--- (B) // v- m- v m+ v+ const bool lower_boundary_is_closer = F == 0 and E > 1; const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); const diyfp m_minus = lower_boundary_is_closer ? diyfp(4 * v.f - 1, v.e - 2) // (B) : diyfp(2 * v.f - 1, v.e - 1); // (A) // Determine the normalized w+ = m+. const diyfp w_plus = diyfp::normalize(m_plus); // Determine w- = m- such that e_(w-) = e_(w+). const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e); return {diyfp::normalize(v), w_minus, w_plus}; } // Given normalized diyfp w, Grisu needs to find a (normalized) cached // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies // within a certain range [alpha, gamma] (Definition 3.2 from [1]) // // alpha <= e = e_c + e_w + q <= gamma // // or // // f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q // <= f_c * f_w * 2^gamma // // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies // // 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma // // or // // 2^(q - 2 + alpha) <= c * w < 2^(q + gamma) // // The choice of (alpha,gamma) determines the size of the table and the form of // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well // in practice: // // The idea is to cut the number c * w = f * 2^e into two parts, which can be // processed independently: An integral part p1, and a fractional part p2: // // f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e // = (f div 2^-e) + (f mod 2^-e) * 2^e // = p1 + p2 * 2^e // // The conversion of p1 into decimal form requires a series of divisions and // modulos by (a power of) 10. These operations are faster for 32-bit than for // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be // achieved by choosing // // -e >= 32 or e <= -32 := gamma // // In order to convert the fractional part // // p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ... // // into decimal form, the fraction is repeatedly multiplied by 10 and the digits // d[-i] are extracted in order: // // (10 * p2) div 2^-e = d[-1] // (10 * p2) mod 2^-e = d[-2] / 10^1 + ... // // The multiplication by 10 must not overflow. It is sufficient to choose // // 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64. // // Since p2 = f mod 2^-e < 2^-e, // // -e <= 60 or e >= -60 := alpha constexpr int kAlpha = -60; constexpr int kGamma = -32; struct cached_power // c = f * 2^e ~= 10^k { std::uint64_t f; int e; int k; }; /*! For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c satisfies (Definition 3.2 from [1]) alpha <= e_c + e + q <= gamma. */ inline cached_power get_cached_power_for_binary_exponent(int e) { // Now // // alpha <= e_c + e + q <= gamma (1) // ==> f_c * 2^alpha <= c * 2^e * 2^q // // and since the c's are normalized, 2^(q-1) <= f_c, // // ==> 2^(q - 1 + alpha) <= c * 2^(e + q) // ==> 2^(alpha - e - 1) <= c // // If c were an exakt power of ten, i.e. c = 10^k, one may determine k as // // k = ceil( log_10( 2^(alpha - e - 1) ) ) // = ceil( (alpha - e - 1) * log_10(2) ) // // From the paper: // "In theory the result of the procedure could be wrong since c is rounded, // and the computation itself is approximated [...]. In practice, however, // this simple function is sufficient." // // For IEEE double precision floating-point numbers converted into // normalized diyfp's w = f * 2^e, with q = 64, // // e >= -1022 (min IEEE exponent) // -52 (p - 1) // -52 (p - 1, possibly normalize denormal IEEE numbers) // -11 (normalize the diyfp) // = -1137 // // and // // e <= +1023 (max IEEE exponent) // -52 (p - 1) // -11 (normalize the diyfp) // = 960 // // This binary exponent range [-1137,960] results in a decimal exponent // range [-307,324]. One does not need to store a cached power for each // k in this range. For each such k it suffices to find a cached power // such that the exponent of the product lies in [alpha,gamma]. // This implies that the difference of the decimal exponents of adjacent // table entries must be less than or equal to // // floor( (gamma - alpha) * log_10(2) ) = 8. // // (A smaller distance gamma-alpha would require a larger table.) // NB: // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34. constexpr int kCachedPowersMinDecExp = -300; constexpr int kCachedPowersDecStep = 8; static constexpr std::array<cached_power, 79> kCachedPowers = { { { 0xAB70FE17C79AC6CA, -1060, -300 }, { 0xFF77B1FCBEBCDC4F, -1034, -292 }, { 0xBE5691EF416BD60C, -1007, -284 }, { 0x8DD01FAD907FFC3C, -980, -276 }, { 0xD3515C2831559A83, -954, -268 }, { 0x9D71AC8FADA6C9B5, -927, -260 }, { 0xEA9C227723EE8BCB, -901, -252 }, { 0xAECC49914078536D, -874, -244 }, { 0x823C12795DB6CE57, -847, -236 }, { 0xC21094364DFB5637, -821, -228 }, { 0x9096EA6F3848984F, -794, -220 }, { 0xD77485CB25823AC7, -768, -212 }, { 0xA086CFCD97BF97F4, -741, -204 }, { 0xEF340A98172AACE5, -715, -196 }, { 0xB23867FB2A35B28E, -688, -188 }, { 0x84C8D4DFD2C63F3B, -661, -180 }, { 0xC5DD44271AD3CDBA, -635, -172 }, { 0x936B9FCEBB25C996, -608, -164 }, { 0xDBAC6C247D62A584, -582, -156 }, { 0xA3AB66580D5FDAF6, -555, -148 }, { 0xF3E2F893DEC3F126, -529, -140 }, { 0xB5B5ADA8AAFF80B8, -502, -132 }, { 0x87625F056C7C4A8B, -475, -124 }, { 0xC9BCFF6034C13053, -449, -116 }, { 0x964E858C91BA2655, -422, -108 }, { 0xDFF9772470297EBD, -396, -100 }, { 0xA6DFBD9FB8E5B88F, -369, -92 }, { 0xF8A95FCF88747D94, -343, -84 }, { 0xB94470938FA89BCF, -316, -76 }, { 0x8A08F0F8BF0F156B, -289, -68 }, { 0xCDB02555653131B6, -263, -60 }, { 0x993FE2C6D07B7FAC, -236, -52 }, { 0xE45C10C42A2B3B06, -210, -44 }, { 0xAA242499697392D3, -183, -36 }, { 0xFD87B5F28300CA0E, -157, -28 }, { 0xBCE5086492111AEB, -130, -20 }, { 0x8CBCCC096F5088CC, -103, -12 }, { 0xD1B71758E219652C, -77, -4 }, { 0x9C40000000000000, -50, 4 }, { 0xE8D4A51000000000, -24, 12 }, { 0xAD78EBC5AC620000, 3, 20 }, { 0x813F3978F8940984, 30, 28 }, { 0xC097CE7BC90715B3, 56, 36 }, { 0x8F7E32CE7BEA5C70, 83, 44 }, { 0xD5D238A4ABE98068, 109, 52 }, { 0x9F4F2726179A2245, 136, 60 }, { 0xED63A231D4C4FB27, 162, 68 }, { 0xB0DE65388CC8ADA8, 189, 76 }, { 0x83C7088E1AAB65DB, 216, 84 }, { 0xC45D1DF942711D9A, 242, 92 }, { 0x924D692CA61BE758, 269, 100 }, { 0xDA01EE641A708DEA, 295, 108 }, { 0xA26DA3999AEF774A, 322, 116 }, { 0xF209787BB47D6B85, 348, 124 }, { 0xB454E4A179DD1877, 375, 132 }, { 0x865B86925B9BC5C2, 402, 140 }, { 0xC83553C5C8965D3D, 428, 148 }, { 0x952AB45CFA97A0B3, 455, 156 }, { 0xDE469FBD99A05FE3, 481, 164 }, { 0xA59BC234DB398C25, 508, 172 }, { 0xF6C69A72A3989F5C, 534, 180 }, { 0xB7DCBF5354E9BECE, 561, 188 }, { 0x88FCF317F22241E2, 588, 196 }, { 0xCC20CE9BD35C78A5, 614, 204 }, { 0x98165AF37B2153DF, 641, 212 }, { 0xE2A0B5DC971F303A, 667, 220 }, { 0xA8D9D1535CE3B396, 694, 228 }, { 0xFB9B7CD9A4A7443C, 720, 236 }, { 0xBB764C4CA7A44410, 747, 244 }, { 0x8BAB8EEFB6409C1A, 774, 252 }, { 0xD01FEF10A657842C, 800, 260 }, { 0x9B10A4E5E9913129, 827, 268 }, { 0xE7109BFBA19C0C9D, 853, 276 }, { 0xAC2820D9623BF429, 880, 284 }, { 0x80444B5E7AA7CF85, 907, 292 }, { 0xBF21E44003ACDD2D, 933, 300 }, { 0x8E679C2F5E44FF8F, 960, 308 }, { 0xD433179D9C8CB841, 986, 316 }, { 0x9E19DB92B4E31BA9, 1013, 324 }, } }; // This computation gives exactly the same results for k as // k = ceil((kAlpha - e - 1) * 0.30102999566398114) // for |e| <= 1500, but doesn't require floating-point operations. // NB: log_10(2) ~= 78913 / 2^18 assert(e >= -1500); assert(e <= 1500); const int f = kAlpha - e - 1; const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0); const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; assert(index >= 0); assert(static_cast<std::size_t>(index) < kCachedPowers.size()); const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)]; assert(kAlpha <= cached.e + e + 64); assert(kGamma >= cached.e + e + 64); return cached; } /*! For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k. For n == 0, returns 1 and sets pow10 := 1. */ inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10) { // LCOV_EXCL_START if (n >= 1000000000) { pow10 = 1000000000; return 10; } // LCOV_EXCL_STOP else if (n >= 100000000) { pow10 = 100000000; return 9; } else if (n >= 10000000) { pow10 = 10000000; return 8; } else if (n >= 1000000) { pow10 = 1000000; return 7; } else if (n >= 100000) { pow10 = 100000; return 6; } else if (n >= 10000) { pow10 = 10000; return 5; } else if (n >= 1000) { pow10 = 1000; return 4; } else if (n >= 100) { pow10 = 100; return 3; } else if (n >= 10) { pow10 = 10; return 2; } else { pow10 = 1; return 1; } } inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta, std::uint64_t rest, std::uint64_t ten_k) { assert(len >= 1); assert(dist <= delta); assert(rest <= delta); assert(ten_k > 0); // <--------------------------- delta ----> // <---- dist ---------> // --------------[------------------+-------------------]-------------- // M- w M+ // // ten_k // <------> // <---- rest ----> // --------------[------------------+----+--------------]-------------- // w V // = buf * 10^k // // ten_k represents a unit-in-the-last-place in the decimal representation // stored in buf. // Decrement buf by ten_k while this takes buf closer to w. // The tests are written in this order to avoid overflow in unsigned // integer arithmetic. while (rest < dist and delta - rest >= ten_k and (rest + ten_k < dist or dist - rest > rest + ten_k - dist)) { assert(buf[len - 1] != '0'); buf[len - 1]--; rest += ten_k; } } /*! Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+. M- and M+ must be normalized and share the same exponent -60 <= e <= -32. */ inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent, diyfp M_minus, diyfp w, diyfp M_plus) { static_assert(kAlpha >= -60, "internal error"); static_assert(kGamma <= -32, "internal error"); // Generates the digits (and the exponent) of a decimal floating-point // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma. // // <--------------------------- delta ----> // <---- dist ---------> // --------------[------------------+-------------------]-------------- // M- w M+ // // Grisu2 generates the digits of M+ from left to right and stops as soon as // V is in [M-,M+]. assert(M_plus.e >= kAlpha); assert(M_plus.e <= kGamma); std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e) std::uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e) // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0): // // M+ = f * 2^e // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e // = ((p1 ) * 2^-e + (p2 )) * 2^e // = p1 + p2 * 2^e const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e); auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.) std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e // 1) // // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0] assert(p1 > 0); std::uint32_t pow10; const int k = find_largest_pow10(p1, pow10); // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1) // // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1)) // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1)) // // M+ = p1 + p2 * 2^e // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e // = d[k-1] * 10^(k-1) + ( rest) * 2^e // // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0) // // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0] // // but stop as soon as // // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e int n = k; while (n > 0) { // Invariants: // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k) // pow10 = 10^(n-1) <= p1 < 10^n // const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1) const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1) // // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e) // assert(d <= 9); buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d // // M+ = buffer * 10^(n-1) + (r + p2 * 2^e) // p1 = r; n--; // // M+ = buffer * 10^n + (p1 + p2 * 2^e) // pow10 = 10^n // // Now check if enough digits have been generated. // Compute // // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e // // Note: // Since rest and delta share the same exponent e, it suffices to // compare the significands. const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2; if (rest <= delta) { // V = buffer * 10^n, with M- <= V <= M+. decimal_exponent += n; // We may now just stop. But instead look if the buffer could be // decremented to bring V closer to w. // // pow10 = 10^n is now 1 ulp in the decimal representation V. // The rounding procedure works with diyfp's with an implicit // exponent of e. // // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e // const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e; grisu2_round(buffer, length, dist, delta, rest, ten_n); return; } pow10 /= 10; // // pow10 = 10^(n-1) <= p1 < 10^n // Invariants restored. } // 2) // // The digits of the integral part have been generated: // // M+ = d[k-1]...d[1]d[0] + p2 * 2^e // = buffer + p2 * 2^e // // Now generate the digits of the fractional part p2 * 2^e. // // Note: // No decimal point is generated: the exponent is adjusted instead. // // p2 actually represents the fraction // // p2 * 2^e // = p2 / 2^-e // = d[-1] / 10^1 + d[-2] / 10^2 + ... // // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...) // // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...) // // using // // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e) // = ( d) * 2^-e + ( r) // // or // 10^m * p2 * 2^e = d + r * 2^e // // i.e. // // M+ = buffer + p2 * 2^e // = buffer + 10^-m * (d + r * 2^e) // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e // // and stop as soon as 10^-m * r * 2^e <= delta * 2^e assert(p2 > delta); int m = 0; for (;;) { // Invariant: // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e // = buffer * 10^-m + 10^-m * (p2 ) * 2^e // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e // assert(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10); p2 *= 10; const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e // // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e)) // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e // assert(d <= 9); buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d // // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e // p2 = r; m++; // // M+ = buffer * 10^-m + 10^-m * p2 * 2^e // Invariant restored. // Check if enough digits have been generated. // // 10^-m * p2 * 2^e <= delta * 2^e // p2 * 2^e <= 10^m * delta * 2^e // p2 <= 10^m * delta delta *= 10; dist *= 10; if (p2 <= delta) { break; } } // V = buffer * 10^-m, with M- <= V <= M+. decimal_exponent -= m; // 1 ulp in the decimal representation is now 10^-m. // Since delta and dist are now scaled by 10^m, we need to do the // same with ulp in order to keep the units in sync. // // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e // const std::uint64_t ten_m = one.f; grisu2_round(buffer, length, dist, delta, p2, ten_m); // By construction this algorithm generates the shortest possible decimal // number (Loitsch, Theorem 6.2) which rounds back to w. // For an input number of precision p, at least // // N = 1 + ceil(p * log_10(2)) // // decimal digits are sufficient to identify all binary floating-point // numbers (Matula, "In-and-Out conversions"). // This implies that the algorithm does not produce more than N decimal // digits. // // N = 17 for p = 53 (IEEE double precision) // N = 9 for p = 24 (IEEE single precision) } /*! v = buf * 10^decimal_exponent len is the length of the buffer (number of decimal digits) The buffer must be large enough, i.e. >= max_digits10. */ inline void grisu2(char* buf, int& len, int& decimal_exponent, diyfp m_minus, diyfp v, diyfp m_plus) { assert(m_plus.e == m_minus.e); assert(m_plus.e == v.e); // --------(-----------------------+-----------------------)-------- (A) // m- v m+ // // --------------------(-----------+-----------------------)-------- (B) // m- v m+ // // First scale v (and m- and m+) such that the exponent is in the range // [alpha, gamma]. const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e); const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma] const diyfp w = diyfp::mul(v, c_minus_k); const diyfp w_minus = diyfp::mul(m_minus, c_minus_k); const diyfp w_plus = diyfp::mul(m_plus, c_minus_k); // ----(---+---)---------------(---+---)---------------(---+---)---- // w- w w+ // = c*m- = c*v = c*m+ // // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and // w+ are now off by a small amount. // In fact: // // w - v * 10^k < 1 ulp // // To account for this inaccuracy, add resp. subtract 1 ulp. // // --------+---[---------------(---+---)---------------]---+-------- // w- M- w M+ w+ // // Now any number in [M-, M+] (bounds included) will round to w when input, // regardless of how the input rounding algorithm breaks ties. // // And digit_gen generates the shortest possible such number in [M-, M+]. // Note that this does not mean that Grisu2 always generates the shortest // possible number in the interval (m-, m+). const diyfp M_minus(w_minus.f + 1, w_minus.e); const diyfp M_plus (w_plus.f - 1, w_plus.e ); decimal_exponent = -cached.k; // = -(-k) = k grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus); } /*! v = buf * 10^decimal_exponent len is the length of the buffer (number of decimal digits) The buffer must be large enough, i.e. >= max_digits10. */ template <typename FloatType> void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value) { static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3, "internal error: not enough precision"); assert(std::isfinite(value)); assert(value > 0); // If the neighbors (and boundaries) of 'value' are always computed for double-precision // numbers, all float's can be recovered using strtod (and strtof). However, the resulting // decimal representations are not exactly "short". // // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars) // says "value is converted to a string as if by std::sprintf in the default ("C") locale" // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars' // does. // On the other hand, the documentation for 'std::to_chars' requires that "parsing the // representation using the corresponding std::from_chars function recovers value exactly". That // indicates that single precision floating-point numbers should be recovered using // 'std::strtof'. // // NB: If the neighbors are computed for single-precision numbers, there is a single float // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision // value is off by 1 ulp. #if 0 const boundaries w = compute_boundaries(static_cast<double>(value)); #else const boundaries w = compute_boundaries(value); #endif grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus); } /*! @brief appends a decimal representation of e to buf @return a pointer to the element following the exponent. @pre -1000 < e < 1000 */ inline char* append_exponent(char* buf, int e) { assert(e > -1000); assert(e < 1000); if (e < 0) { e = -e; *buf++ = '-'; } else { *buf++ = '+'; } auto k = static_cast<std::uint32_t>(e); if (k < 10) { // Always print at least two digits in the exponent. // This is for compatibility with printf("%g"). *buf++ = '0'; *buf++ = static_cast<char>('0' + k); } else if (k < 100) { *buf++ = static_cast<char>('0' + k / 10); k %= 10; *buf++ = static_cast<char>('0' + k); } else { *buf++ = static_cast<char>('0' + k / 100); k %= 100; *buf++ = static_cast<char>('0' + k / 10); k %= 10; *buf++ = static_cast<char>('0' + k); } return buf; } /*! @brief prettify v = buf * 10^decimal_exponent If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point notation. Otherwise it will be printed in exponential notation. @pre min_exp < 0 @pre max_exp > 0 */ inline char* format_buffer(char* buf, int len, int decimal_exponent, int min_exp, int max_exp) { assert(min_exp < 0); assert(max_exp > 0); const int k = len; const int n = len + decimal_exponent; // v = buf * 10^(n-k) // k is the length of the buffer (number of decimal digits) // n is the position of the decimal point relative to the start of the buffer. if (k <= n and n <= max_exp) { // digits[000] // len <= max_exp + 2 std::memset(buf + k, '0', static_cast<size_t>(n - k)); // Make it look like a floating-point number (#362, #378) buf[n + 0] = '.'; buf[n + 1] = '0'; return buf + (n + 2); } if (0 < n and n <= max_exp) { // dig.its // len <= max_digits10 + 1 assert(k > n); std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n)); buf[n] = '.'; return buf + (k + 1); } if (min_exp < n and n <= 0) { // 0.[000]digits // len <= 2 + (-min_exp - 1) + max_digits10 std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k)); buf[0] = '0'; buf[1] = '.'; std::memset(buf + 2, '0', static_cast<size_t>(-n)); return buf + (2 + (-n) + k); } if (k == 1) { // dE+123 // len <= 1 + 5 buf += 1; } else { // d.igitsE+123 // len <= max_digits10 + 1 + 5 std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1)); buf[1] = '.'; buf += 1 + k; } *buf++ = 'e'; return append_exponent(buf, n - 1); } } // namespace dtoa_impl /*! @brief generates a decimal representation of the floating-point number value in [first, last). The format of the resulting decimal representation is similar to printf's %g format. Returns an iterator pointing past-the-end of the decimal representation. @note The input number must be finite, i.e. NaN's and Inf's are not supported. @note The buffer must be large enough. @note The result is NOT null-terminated. */ template <typename FloatType> char* to_chars(char* first, const char* last, FloatType value) { static_cast<void>(last); // maybe unused - fix warning assert(std::isfinite(value)); // Use signbit(value) instead of (value < 0) since signbit works for -0. if (std::signbit(value)) { value = -value; *first++ = '-'; } if (value == 0) // +-0 { *first++ = '0'; // Make it look like a floating-point number (#362, #378) *first++ = '.'; *first++ = '0'; return first; } assert(last - first >= std::numeric_limits<FloatType>::max_digits10); // Compute v = buffer * 10^decimal_exponent. // The decimal digits are stored in the buffer, which needs to be interpreted // as an unsigned decimal integer. // len is the length of the buffer, i.e. the number of decimal digits. int len = 0; int decimal_exponent = 0; dtoa_impl::grisu2(first, len, decimal_exponent, value); assert(len <= std::numeric_limits<FloatType>::max_digits10); // Format the buffer like printf("%.*g", prec, value) constexpr int kMinExp = -4; // Use digits10 here to increase compatibility with version 2. constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10; assert(last - first >= kMaxExp + 2); assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10); assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6); return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp); } } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/exceptions.hpp> // #include <nlohmann/detail/macro_scope.hpp> // #include <nlohmann/detail/meta/cpp_future.hpp> // #include <nlohmann/detail/output/binary_writer.hpp> // #include <nlohmann/detail/output/output_adapters.hpp> // #include <nlohmann/detail/value_t.hpp> namespace nlohmann { namespace detail { /////////////////// // serialization // /////////////////// /// how to treat decoding errors enum class error_handler_t { strict, ///< throw a type_error exception in case of invalid UTF-8 replace, ///< replace invalid UTF-8 sequences with U+FFFD ignore ///< ignore invalid UTF-8 sequences }; template<typename BasicJsonType> class serializer { using string_t = typename BasicJsonType::string_t; using number_float_t = typename BasicJsonType::number_float_t; using number_integer_t = typename BasicJsonType::number_integer_t; using number_unsigned_t = typename BasicJsonType::number_unsigned_t; static constexpr std::uint8_t UTF8_ACCEPT = 0; static constexpr std::uint8_t UTF8_REJECT = 1; public: /*! @param[in] s output stream to serialize to @param[in] ichar indentation character to use @param[in] error_handler_ how to react on decoding errors */ serializer(output_adapter_t<char> s, const char ichar, error_handler_t error_handler_ = error_handler_t::strict) : o(std::move(s)) , loc(std::localeconv()) , thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep)) , decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point)) , indent_char(ichar) , indent_string(512, indent_char) , error_handler(error_handler_) {} // delete because of pointer members serializer(const serializer&) = delete; serializer& operator=(const serializer&) = delete; serializer(serializer&&) = delete; serializer& operator=(serializer&&) = delete; ~serializer() = default; /*! @brief internal implementation of the serialization function This function is called by the public member function dump and organizes the serialization internally. The indentation level is propagated as additional parameter. In case of arrays and objects, the function is called recursively. - strings and object keys are escaped using `escape_string()` - integer numbers are converted implicitly via `operator<<` - floating-point numbers are converted to a string using `"%g"` format @param[in] val value to serialize @param[in] pretty_print whether the output shall be pretty-printed @param[in] indent_step the indent level @param[in] current_indent the current indent level (only used internally) */ void dump(const BasicJsonType& val, const bool pretty_print, const bool ensure_ascii, const unsigned int indent_step, const unsigned int current_indent = 0) { switch (val.m_type) { case value_t::object: { if (val.m_value.object->empty()) { o->write_characters("{}", 2); return; } if (pretty_print) { o->write_characters("{\n", 2); // variable to hold indentation for recursive calls const auto new_indent = current_indent + indent_step; if (JSON_UNLIKELY(indent_string.size() < new_indent)) { indent_string.resize(indent_string.size() * 2, ' '); } // first n-1 elements auto i = val.m_value.object->cbegin(); for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i) { o->write_characters(indent_string.c_str(), new_indent); o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\": ", 3); dump(i->second, true, ensure_ascii, indent_step, new_indent); o->write_characters(",\n", 2); } // last element assert(i != val.m_value.object->cend()); assert(std::next(i) == val.m_value.object->cend()); o->write_characters(indent_string.c_str(), new_indent); o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\": ", 3); dump(i->second, true, ensure_ascii, indent_step, new_indent); o->write_character('\n'); o->write_characters(indent_string.c_str(), current_indent); o->write_character('}'); } else { o->write_character('{'); // first n-1 elements auto i = val.m_value.object->cbegin(); for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i) { o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\":", 2); dump(i->second, false, ensure_ascii, indent_step, current_indent); o->write_character(','); } // last element assert(i != val.m_value.object->cend()); assert(std::next(i) == val.m_value.object->cend()); o->write_character('\"'); dump_escaped(i->first, ensure_ascii); o->write_characters("\":", 2); dump(i->second, false, ensure_ascii, indent_step, current_indent); o->write_character('}'); } return; } case value_t::array: { if (val.m_value.array->empty()) { o->write_characters("[]", 2); return; } if (pretty_print) { o->write_characters("[\n", 2); // variable to hold indentation for recursive calls const auto new_indent = current_indent + indent_step; if (JSON_UNLIKELY(indent_string.size() < new_indent)) { indent_string.resize(indent_string.size() * 2, ' '); } // first n-1 elements for (auto i = val.m_value.array->cbegin(); i != val.m_value.array->cend() - 1; ++i) { o->write_characters(indent_string.c_str(), new_indent); dump(*i, true, ensure_ascii, indent_step, new_indent); o->write_characters(",\n", 2); } // last element assert(not val.m_value.array->empty()); o->write_characters(indent_string.c_str(), new_indent); dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent); o->write_character('\n'); o->write_characters(indent_string.c_str(), current_indent); o->write_character(']'); } else { o->write_character('['); // first n-1 elements for (auto i = val.m_value.array->cbegin(); i != val.m_value.array->cend() - 1; ++i) { dump(*i, false, ensure_ascii, indent_step, current_indent); o->write_character(','); } // last element assert(not val.m_value.array->empty()); dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent); o->write_character(']'); } return; } case value_t::string: { o->write_character('\"'); dump_escaped(*val.m_value.string, ensure_ascii); o->write_character('\"'); return; } case value_t::boolean: { if (val.m_value.boolean) { o->write_characters("true", 4); } else { o->write_characters("false", 5); } return; } case value_t::number_integer: { dump_integer(val.m_value.number_integer); return; } case value_t::number_unsigned: { dump_integer(val.m_value.number_unsigned); return; } case value_t::number_float: { dump_float(val.m_value.number_float); return; } case value_t::discarded: { o->write_characters("<discarded>", 11); return; } case value_t::null: { o->write_characters("null", 4); return; } default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } } private: /*! @brief dump escaped string Escape a string by replacing certain special characters by a sequence of an escape character (backslash) and another character and other control characters by a sequence of "\u" followed by a four-digit hex representation. The escaped string is written to output stream @a o. @param[in] s the string to escape @param[in] ensure_ascii whether to escape non-ASCII characters with \uXXXX sequences @complexity Linear in the length of string @a s. */ void dump_escaped(const string_t& s, const bool ensure_ascii) { std::uint32_t codepoint; std::uint8_t state = UTF8_ACCEPT; std::size_t bytes = 0; // number of bytes written to string_buffer // number of bytes written at the point of the last valid byte std::size_t bytes_after_last_accept = 0; std::size_t undumped_chars = 0; for (std::size_t i = 0; i < s.size(); ++i) { const auto byte = static_cast<uint8_t>(s[i]); switch (decode(state, codepoint, byte)) { case UTF8_ACCEPT: // decode found a new code point { switch (codepoint) { case 0x08: // backspace { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'b'; break; } case 0x09: // horizontal tab { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 't'; break; } case 0x0A: // newline { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'n'; break; } case 0x0C: // formfeed { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'f'; break; } case 0x0D: // carriage return { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'r'; break; } case 0x22: // quotation mark { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = '\"'; break; } case 0x5C: // reverse solidus { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = '\\'; break; } default: { // escape control characters (0x00..0x1F) or, if // ensure_ascii parameter is used, non-ASCII characters if ((codepoint <= 0x1F) or (ensure_ascii and (codepoint >= 0x7F))) { if (codepoint <= 0xFFFF) { (std::snprintf)(string_buffer.data() + bytes, 7, "\\u%04x", static_cast<std::uint16_t>(codepoint)); bytes += 6; } else { (std::snprintf)(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x", static_cast<std::uint16_t>(0xD7C0u + (codepoint >> 10u)), static_cast<std::uint16_t>(0xDC00u + (codepoint & 0x3FFu))); bytes += 12; } } else { // copy byte to buffer (all previous bytes // been copied have in default case above) string_buffer[bytes++] = s[i]; } break; } } // write buffer and reset index; there must be 13 bytes // left, as this is the maximal number of bytes to be // written ("\uxxxx\uxxxx\0") for one code point if (string_buffer.size() - bytes < 13) { o->write_characters(string_buffer.data(), bytes); bytes = 0; } // remember the byte position of this accept bytes_after_last_accept = bytes; undumped_chars = 0; break; } case UTF8_REJECT: // decode found invalid UTF-8 byte { switch (error_handler) { case error_handler_t::strict: { std::string sn(3, '\0'); (std::snprintf)(&sn[0], sn.size(), "%.2X", byte); JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + sn)); } case error_handler_t::ignore: case error_handler_t::replace: { // in case we saw this character the first time, we // would like to read it again, because the byte // may be OK for itself, but just not OK for the // previous sequence if (undumped_chars > 0) { --i; } // reset length buffer to the last accepted index; // thus removing/ignoring the invalid characters bytes = bytes_after_last_accept; if (error_handler == error_handler_t::replace) { // add a replacement character if (ensure_ascii) { string_buffer[bytes++] = '\\'; string_buffer[bytes++] = 'u'; string_buffer[bytes++] = 'f'; string_buffer[bytes++] = 'f'; string_buffer[bytes++] = 'f'; string_buffer[bytes++] = 'd'; } else { string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xEF'); string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBF'); string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBD'); } // write buffer and reset index; there must be 13 bytes // left, as this is the maximal number of bytes to be // written ("\uxxxx\uxxxx\0") for one code point if (string_buffer.size() - bytes < 13) { o->write_characters(string_buffer.data(), bytes); bytes = 0; } bytes_after_last_accept = bytes; } undumped_chars = 0; // continue processing the string state = UTF8_ACCEPT; break; } default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } break; } default: // decode found yet incomplete multi-byte code point { if (not ensure_ascii) { // code point will not be escaped - copy byte to buffer string_buffer[bytes++] = s[i]; } ++undumped_chars; break; } } } // we finished processing the string if (JSON_LIKELY(state == UTF8_ACCEPT)) { // write buffer if (bytes > 0) { o->write_characters(string_buffer.data(), bytes); } } else { // we finish reading, but do not accept: string was incomplete switch (error_handler) { case error_handler_t::strict: { std::string sn(3, '\0'); (std::snprintf)(&sn[0], sn.size(), "%.2X", static_cast<std::uint8_t>(s.back())); JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + sn)); } case error_handler_t::ignore: { // write all accepted bytes o->write_characters(string_buffer.data(), bytes_after_last_accept); break; } case error_handler_t::replace: { // write all accepted bytes o->write_characters(string_buffer.data(), bytes_after_last_accept); // add a replacement character if (ensure_ascii) { o->write_characters("\\ufffd", 6); } else { o->write_characters("\xEF\xBF\xBD", 3); } break; } default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } } } /*! @brief count digits Count the number of decimal (base 10) digits for an input unsigned integer. @param[in] x unsigned integer number to count its digits @return number of decimal digits */ inline unsigned int count_digits(number_unsigned_t x) noexcept { unsigned int n_digits = 1; for (;;) { if (x < 10) { return n_digits; } if (x < 100) { return n_digits + 1; } if (x < 1000) { return n_digits + 2; } if (x < 10000) { return n_digits + 3; } x = x / 10000u; n_digits += 4; } } /*! @brief dump an integer Dump a given integer to output stream @a o. Works internally with @a number_buffer. @param[in] x integer number (signed or unsigned) to dump @tparam NumberType either @a number_integer_t or @a number_unsigned_t */ template<typename NumberType, detail::enable_if_t< std::is_same<NumberType, number_unsigned_t>::value or std::is_same<NumberType, number_integer_t>::value, int> = 0> void dump_integer(NumberType x) { static constexpr std::array<std::array<char, 2>, 100> digits_to_99 { { {{'0', '0'}}, {{'0', '1'}}, {{'0', '2'}}, {{'0', '3'}}, {{'0', '4'}}, {{'0', '5'}}, {{'0', '6'}}, {{'0', '7'}}, {{'0', '8'}}, {{'0', '9'}}, {{'1', '0'}}, {{'1', '1'}}, {{'1', '2'}}, {{'1', '3'}}, {{'1', '4'}}, {{'1', '5'}}, {{'1', '6'}}, {{'1', '7'}}, {{'1', '8'}}, {{'1', '9'}}, {{'2', '0'}}, {{'2', '1'}}, {{'2', '2'}}, {{'2', '3'}}, {{'2', '4'}}, {{'2', '5'}}, {{'2', '6'}}, {{'2', '7'}}, {{'2', '8'}}, {{'2', '9'}}, {{'3', '0'}}, {{'3', '1'}}, {{'3', '2'}}, {{'3', '3'}}, {{'3', '4'}}, {{'3', '5'}}, {{'3', '6'}}, {{'3', '7'}}, {{'3', '8'}}, {{'3', '9'}}, {{'4', '0'}}, {{'4', '1'}}, {{'4', '2'}}, {{'4', '3'}}, {{'4', '4'}}, {{'4', '5'}}, {{'4', '6'}}, {{'4', '7'}}, {{'4', '8'}}, {{'4', '9'}}, {{'5', '0'}}, {{'5', '1'}}, {{'5', '2'}}, {{'5', '3'}}, {{'5', '4'}}, {{'5', '5'}}, {{'5', '6'}}, {{'5', '7'}}, {{'5', '8'}}, {{'5', '9'}}, {{'6', '0'}}, {{'6', '1'}}, {{'6', '2'}}, {{'6', '3'}}, {{'6', '4'}}, {{'6', '5'}}, {{'6', '6'}}, {{'6', '7'}}, {{'6', '8'}}, {{'6', '9'}}, {{'7', '0'}}, {{'7', '1'}}, {{'7', '2'}}, {{'7', '3'}}, {{'7', '4'}}, {{'7', '5'}}, {{'7', '6'}}, {{'7', '7'}}, {{'7', '8'}}, {{'7', '9'}}, {{'8', '0'}}, {{'8', '1'}}, {{'8', '2'}}, {{'8', '3'}}, {{'8', '4'}}, {{'8', '5'}}, {{'8', '6'}}, {{'8', '7'}}, {{'8', '8'}}, {{'8', '9'}}, {{'9', '0'}}, {{'9', '1'}}, {{'9', '2'}}, {{'9', '3'}}, {{'9', '4'}}, {{'9', '5'}}, {{'9', '6'}}, {{'9', '7'}}, {{'9', '8'}}, {{'9', '9'}}, } }; // special case for "0" if (x == 0) { o->write_character('0'); return; } // use a pointer to fill the buffer auto buffer_ptr = number_buffer.begin(); const bool is_negative = std::is_same<NumberType, number_integer_t>::value and not(x >= 0); // see issue #755 number_unsigned_t abs_value; unsigned int n_chars; if (is_negative) { *buffer_ptr = '-'; abs_value = static_cast<number_unsigned_t>(std::abs(static_cast<std::intmax_t>(x))); // account one more byte for the minus sign n_chars = 1 + count_digits(abs_value); } else { abs_value = static_cast<number_unsigned_t>(x); n_chars = count_digits(abs_value); } // spare 1 byte for '\0' assert(n_chars < number_buffer.size() - 1); // jump to the end to generate the string from backward // so we later avoid reversing the result buffer_ptr += n_chars; // Fast int2ascii implementation inspired by "Fastware" talk by Andrei Alexandrescu // See: https://www.youtube.com/watch?v=o4-CwDo2zpg while (abs_value >= 100) { const auto digits_index = static_cast<unsigned>((abs_value % 100)); abs_value /= 100; *(--buffer_ptr) = digits_to_99[digits_index][1]; *(--buffer_ptr) = digits_to_99[digits_index][0]; } if (abs_value >= 10) { const auto digits_index = static_cast<unsigned>(abs_value); *(--buffer_ptr) = digits_to_99[digits_index][1]; *(--buffer_ptr) = digits_to_99[digits_index][0]; } else { *(--buffer_ptr) = static_cast<char>('0' + abs_value); } o->write_characters(number_buffer.data(), n_chars); } /*! @brief dump a floating-point number Dump a given floating-point number to output stream @a o. Works internally with @a number_buffer. @param[in] x floating-point number to dump */ void dump_float(number_float_t x) { // NaN / inf if (not std::isfinite(x)) { o->write_characters("null", 4); return; } // If number_float_t is an IEEE-754 single or double precision number, // use the Grisu2 algorithm to produce short numbers which are // guaranteed to round-trip, using strtof and strtod, resp. // // NB: The test below works if <long double> == <double>. static constexpr bool is_ieee_single_or_double = (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 24 and std::numeric_limits<number_float_t>::max_exponent == 128) or (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 53 and std::numeric_limits<number_float_t>::max_exponent == 1024); dump_float(x, std::integral_constant<bool, is_ieee_single_or_double>()); } void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/) { char* begin = number_buffer.data(); char* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x); o->write_characters(begin, static_cast<size_t>(end - begin)); } void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/) { // get number of digits for a float -> text -> float round-trip static constexpr auto d = std::numeric_limits<number_float_t>::max_digits10; // the actual conversion std::ptrdiff_t len = (std::snprintf)(number_buffer.data(), number_buffer.size(), "%.*g", d, x); // negative value indicates an error assert(len > 0); // check if buffer was large enough assert(static_cast<std::size_t>(len) < number_buffer.size()); // erase thousands separator if (thousands_sep != '\0') { const auto end = std::remove(number_buffer.begin(), number_buffer.begin() + len, thousands_sep); std::fill(end, number_buffer.end(), '\0'); assert((end - number_buffer.begin()) <= len); len = (end - number_buffer.begin()); } // convert decimal point to '.' if (decimal_point != '\0' and decimal_point != '.') { const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point); if (dec_pos != number_buffer.end()) { *dec_pos = '.'; } } o->write_characters(number_buffer.data(), static_cast<std::size_t>(len)); // determine if need to append ".0" const bool value_is_int_like = std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1, [](char c) { return c == '.' or c == 'e'; }); if (value_is_int_like) { o->write_characters(".0", 2); } } /*! @brief check whether a string is UTF-8 encoded The function checks each byte of a string whether it is UTF-8 encoded. The result of the check is stored in the @a state parameter. The function must be called initially with state 0 (accept). State 1 means the string must be rejected, because the current byte is not allowed. If the string is completely processed, but the state is non-zero, the string ended prematurely; that is, the last byte indicated more bytes should have followed. @param[in,out] state the state of the decoding @param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT) @param[in] byte next byte to decode @return new state @note The function has been edited: a std::array is used. @copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de> @sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/ */ static std::uint8_t decode(std::uint8_t& state, std::uint32_t& codep, const std::uint8_t byte) noexcept { static const std::array<std::uint8_t, 400> utf8d = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF 0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF 0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF 0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8 } }; const std::uint8_t type = utf8d[byte]; codep = (state != UTF8_ACCEPT) ? (byte & 0x3fu) | (codep << 6u) : (0xFFu >> type) & (byte); state = utf8d[256u + state * 16u + type]; return state; } private: /// the output of the serializer output_adapter_t<char> o = nullptr; /// a (hopefully) large enough character buffer std::array<char, 64> number_buffer{{}}; /// the locale const std::lconv* loc = nullptr; /// the locale's thousand separator character const char thousands_sep = '\0'; /// the locale's decimal point character const char decimal_point = '\0'; /// string buffer std::array<char, 512> string_buffer{{}}; /// the indentation character const char indent_char; /// the indentation string string_t indent_string; /// error_handler how to react on decoding errors const error_handler_t error_handler; }; } // namespace detail } // namespace nlohmann // #include <nlohmann/detail/value_t.hpp> // #include <nlohmann/json_fwd.hpp> /*! @brief namespace for Niels Lohmann @see https://github.com/nlohmann @since version 1.0.0 */ namespace nlohmann { /*! @brief a class to store JSON values @tparam ObjectType type for JSON objects (`std::map` by default; will be used in @ref object_t) @tparam ArrayType type for JSON arrays (`std::vector` by default; will be used in @ref array_t) @tparam StringType type for JSON strings and object keys (`std::string` by default; will be used in @ref string_t) @tparam BooleanType type for JSON booleans (`bool` by default; will be used in @ref boolean_t) @tparam NumberIntegerType type for JSON integer numbers (`int64_t` by default; will be used in @ref number_integer_t) @tparam NumberUnsignedType type for JSON unsigned integer numbers (@c `uint64_t` by default; will be used in @ref number_unsigned_t) @tparam NumberFloatType type for JSON floating-point numbers (`double` by default; will be used in @ref number_float_t) @tparam AllocatorType type of the allocator to use (`std::allocator` by default) @tparam JSONSerializer the serializer to resolve internal calls to `to_json()` and `from_json()` (@ref adl_serializer by default) @requirement The class satisfies the following concept requirements: - Basic - [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible): JSON values can be default constructed. The result will be a JSON null value. - [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible): A JSON value can be constructed from an rvalue argument. - [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible): A JSON value can be copy-constructed from an lvalue expression. - [MoveAssignable](https://en.cppreference.com/w/cpp/named_req/MoveAssignable): A JSON value van be assigned from an rvalue argument. - [CopyAssignable](https://en.cppreference.com/w/cpp/named_req/CopyAssignable): A JSON value can be copy-assigned from an lvalue expression. - [Destructible](https://en.cppreference.com/w/cpp/named_req/Destructible): JSON values can be destructed. - Layout - [StandardLayoutType](https://en.cppreference.com/w/cpp/named_req/StandardLayoutType): JSON values have [standard layout](https://en.cppreference.com/w/cpp/language/data_members#Standard_layout): All non-static data members are private and standard layout types, the class has no virtual functions or (virtual) base classes. - Library-wide - [EqualityComparable](https://en.cppreference.com/w/cpp/named_req/EqualityComparable): JSON values can be compared with `==`, see @ref operator==(const_reference,const_reference). - [LessThanComparable](https://en.cppreference.com/w/cpp/named_req/LessThanComparable): JSON values can be compared with `<`, see @ref operator<(const_reference,const_reference). - [Swappable](https://en.cppreference.com/w/cpp/named_req/Swappable): Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of other compatible types, using unqualified function call @ref swap(). - [NullablePointer](https://en.cppreference.com/w/cpp/named_req/NullablePointer): JSON values can be compared against `std::nullptr_t` objects which are used to model the `null` value. - Container - [Container](https://en.cppreference.com/w/cpp/named_req/Container): JSON values can be used like STL containers and provide iterator access. - [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer); JSON values can be used like STL containers and provide reverse iterator access. @invariant The member variables @a m_value and @a m_type have the following relationship: - If `m_type == value_t::object`, then `m_value.object != nullptr`. - If `m_type == value_t::array`, then `m_value.array != nullptr`. - If `m_type == value_t::string`, then `m_value.string != nullptr`. The invariants are checked by member function assert_invariant(). @internal @note ObjectType trick from http://stackoverflow.com/a/9860911 @endinternal @see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format](http://rfc7159.net/rfc7159) @since version 1.0.0 @nosubgrouping */ NLOHMANN_BASIC_JSON_TPL_DECLARATION class basic_json { private: template<detail::value_t> friend struct detail::external_constructor; friend ::nlohmann::json_pointer<basic_json>; friend ::nlohmann::detail::parser<basic_json>; friend ::nlohmann::detail::serializer<basic_json>; template<typename BasicJsonType> friend class ::nlohmann::detail::iter_impl; template<typename BasicJsonType, typename CharType> friend class ::nlohmann::detail::binary_writer; template<typename BasicJsonType, typename SAX> friend class ::nlohmann::detail::binary_reader; template<typename BasicJsonType> friend class ::nlohmann::detail::json_sax_dom_parser; template<typename BasicJsonType> friend class ::nlohmann::detail::json_sax_dom_callback_parser; /// workaround type for MSVC using basic_json_t = NLOHMANN_BASIC_JSON_TPL; // convenience aliases for types residing in namespace detail; using lexer = ::nlohmann::detail::lexer<basic_json>; using parser = ::nlohmann::detail::parser<basic_json>; using primitive_iterator_t = ::nlohmann::detail::primitive_iterator_t; template<typename BasicJsonType> using internal_iterator = ::nlohmann::detail::internal_iterator<BasicJsonType>; template<typename BasicJsonType> using iter_impl = ::nlohmann::detail::iter_impl<BasicJsonType>; template<typename Iterator> using iteration_proxy = ::nlohmann::detail::iteration_proxy<Iterator>; template<typename Base> using json_reverse_iterator = ::nlohmann::detail::json_reverse_iterator<Base>; template<typename CharType> using output_adapter_t = ::nlohmann::detail::output_adapter_t<CharType>; using binary_reader = ::nlohmann::detail::binary_reader<basic_json>; template<typename CharType> using binary_writer = ::nlohmann::detail::binary_writer<basic_json, CharType>; using serializer = ::nlohmann::detail::serializer<basic_json>; public: using value_t = detail::value_t; /// JSON Pointer, see @ref nlohmann::json_pointer using json_pointer = ::nlohmann::json_pointer<basic_json>; template<typename T, typename SFINAE> using json_serializer = JSONSerializer<T, SFINAE>; /// how to treat decoding errors using error_handler_t = detail::error_handler_t; /// helper type for initializer lists of basic_json values using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>; using input_format_t = detail::input_format_t; /// SAX interface type, see @ref nlohmann::json_sax using json_sax_t = json_sax<basic_json>; //////////////// // exceptions // //////////////// /// @name exceptions /// Classes to implement user-defined exceptions. /// @{ /// @copydoc detail::exception using exception = detail::exception; /// @copydoc detail::parse_error using parse_error = detail::parse_error; /// @copydoc detail::invalid_iterator using invalid_iterator = detail::invalid_iterator; /// @copydoc detail::type_error using type_error = detail::type_error; /// @copydoc detail::out_of_range using out_of_range = detail::out_of_range; /// @copydoc detail::other_error using other_error = detail::other_error; /// @} ///////////////////// // container types // ///////////////////// /// @name container types /// The canonic container types to use @ref basic_json like any other STL /// container. /// @{ /// the type of elements in a basic_json container using value_type = basic_json; /// the type of an element reference using reference = value_type&; /// the type of an element const reference using const_reference = const value_type&; /// a type to represent differences between iterators using difference_type = std::ptrdiff_t; /// a type to represent container sizes using size_type = std::size_t; /// the allocator type using allocator_type = AllocatorType<basic_json>; /// the type of an element pointer using pointer = typename std::allocator_traits<allocator_type>::pointer; /// the type of an element const pointer using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer; /// an iterator for a basic_json container using iterator = iter_impl<basic_json>; /// a const iterator for a basic_json container using const_iterator = iter_impl<const basic_json>; /// a reverse iterator for a basic_json container using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>; /// a const reverse iterator for a basic_json container using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>; /// @} /*! @brief returns the allocator associated with the container */ static allocator_type get_allocator() { return allocator_type(); } /*! @brief returns version information on the library This function returns a JSON object with information about the library, including the version number and information on the platform and compiler. @return JSON object holding version information key | description ----------- | --------------- `compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version). `copyright` | The copyright line for the library as string. `name` | The name of the library as string. `platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`. `url` | The URL of the project as string. `version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string). @liveexample{The following code shows an example output of the `meta()` function.,meta} @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @complexity Constant. @since 2.1.0 */ JSON_NODISCARD static basic_json meta() { basic_json result; result["copyright"] = "(C) 2013-2017 Niels Lohmann"; result["name"] = "JSON for Modern C++"; result["url"] = "https://github.com/nlohmann/json"; result["version"]["string"] = std::to_string(NLOHMANN_JSON_VERSION_MAJOR) + "." + std::to_string(NLOHMANN_JSON_VERSION_MINOR) + "." + std::to_string(NLOHMANN_JSON_VERSION_PATCH); result["version"]["major"] = NLOHMANN_JSON_VERSION_MAJOR; result["version"]["minor"] = NLOHMANN_JSON_VERSION_MINOR; result["version"]["patch"] = NLOHMANN_JSON_VERSION_PATCH; #ifdef _WIN32 result["platform"] = "win32"; #elif defined __linux__ result["platform"] = "linux"; #elif defined __APPLE__ result["platform"] = "apple"; #elif defined __unix__ result["platform"] = "unix"; #else result["platform"] = "unknown"; #endif #if defined(__ICC) || defined(__INTEL_COMPILER) result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}}; #elif defined(__clang__) result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}}; #elif defined(__GNUC__) || defined(__GNUG__) result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}}; #elif defined(__HP_cc) || defined(__HP_aCC) result["compiler"] = "hp" #elif defined(__IBMCPP__) result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}}; #elif defined(_MSC_VER) result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}}; #elif defined(__PGI) result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}}; #elif defined(__SUNPRO_CC) result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}}; #else result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}}; #endif #ifdef __cplusplus result["compiler"]["c++"] = std::to_string(__cplusplus); #else result["compiler"]["c++"] = "unknown"; #endif return result; } /////////////////////////// // JSON value data types // /////////////////////////// /// @name JSON value data types /// The data types to store a JSON value. These types are derived from /// the template arguments passed to class @ref basic_json. /// @{ #if defined(JSON_HAS_CPP_14) // Use transparent comparator if possible, combined with perfect forwarding // on find() and count() calls prevents unnecessary string construction. using object_comparator_t = std::less<>; #else using object_comparator_t = std::less<StringType>; #endif /*! @brief a type for an object [RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows: > An object is an unordered collection of zero or more name/value pairs, > where a name is a string and a value is a string, number, boolean, null, > object, or array. To store objects in C++, a type is defined by the template parameters described below. @tparam ObjectType the container to store objects (e.g., `std::map` or `std::unordered_map`) @tparam StringType the type of the keys or names (e.g., `std::string`). The comparison function `std::less<StringType>` is used to order elements inside the container. @tparam AllocatorType the allocator to use for objects (e.g., `std::allocator`) #### Default type With the default values for @a ObjectType (`std::map`), @a StringType (`std::string`), and @a AllocatorType (`std::allocator`), the default value for @a object_t is: @code {.cpp} std::map< std::string, // key_type basic_json, // value_type std::less<std::string>, // key_compare std::allocator<std::pair<const std::string, basic_json>> // allocator_type > @endcode #### Behavior The choice of @a object_t influences the behavior of the JSON class. With the default type, objects have the following behavior: - When all names are unique, objects will be interoperable in the sense that all software implementations receiving that object will agree on the name-value mappings. - When the names within an object are not unique, it is unspecified which one of the values for a given key will be chosen. For instance, `{"key": 2, "key": 1}` could be equal to either `{"key": 1}` or `{"key": 2}`. - Internally, name/value pairs are stored in lexicographical order of the names. Objects will also be serialized (see @ref dump) in this order. For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored and serialized as `{"a": 2, "b": 1}`. - When comparing objects, the order of the name/value pairs is irrelevant. This makes objects interoperable in the sense that they will not be affected by these differences. For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be treated as equal. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the maximum depth of nesting. In this class, the object's limit of nesting is not explicitly constrained. However, a maximum depth of nesting may be introduced by the compiler or runtime environment. A theoretical limit can be queried by calling the @ref max_size function of a JSON object. #### Storage Objects are stored as pointers in a @ref basic_json type. That is, for any access to object values, a pointer of type `object_t*` must be dereferenced. @sa @ref array_t -- type for an array value @since version 1.0.0 @note The order name/value pairs are added to the object is *not* preserved by the library. Therefore, iterating an object may return name/value pairs in a different order than they were originally stored. In fact, keys will be traversed in alphabetical order as `std::map` with `std::less` is used by default. Please note this behavior conforms to [RFC 7159](http://rfc7159.net/rfc7159), because any order implements the specified "unordered" nature of JSON objects. */ using object_t = ObjectType<StringType, basic_json, object_comparator_t, AllocatorType<std::pair<const StringType, basic_json>>>; /*! @brief a type for an array [RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows: > An array is an ordered sequence of zero or more values. To store objects in C++, a type is defined by the template parameters explained below. @tparam ArrayType container type to store arrays (e.g., `std::vector` or `std::list`) @tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`) #### Default type With the default values for @a ArrayType (`std::vector`) and @a AllocatorType (`std::allocator`), the default value for @a array_t is: @code {.cpp} std::vector< basic_json, // value_type std::allocator<basic_json> // allocator_type > @endcode #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the maximum depth of nesting. In this class, the array's limit of nesting is not explicitly constrained. However, a maximum depth of nesting may be introduced by the compiler or runtime environment. A theoretical limit can be queried by calling the @ref max_size function of a JSON array. #### Storage Arrays are stored as pointers in a @ref basic_json type. That is, for any access to array values, a pointer of type `array_t*` must be dereferenced. @sa @ref object_t -- type for an object value @since version 1.0.0 */ using array_t = ArrayType<basic_json, AllocatorType<basic_json>>; /*! @brief a type for a string [RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows: > A string is a sequence of zero or more Unicode characters. To store objects in C++, a type is defined by the template parameter described below. Unicode values are split by the JSON class into byte-sized characters during deserialization. @tparam StringType the container to store strings (e.g., `std::string`). Note this container is used for keys/names in objects, see @ref object_t. #### Default type With the default values for @a StringType (`std::string`), the default value for @a string_t is: @code {.cpp} std::string @endcode #### Encoding Strings are stored in UTF-8 encoding. Therefore, functions like `std::string::size()` or `std::string::length()` return the number of bytes in the string rather than the number of characters or glyphs. #### String comparison [RFC 7159](http://rfc7159.net/rfc7159) states: > Software implementations are typically required to test names of object > members for equality. Implementations that transform the textual > representation into sequences of Unicode code units and then perform the > comparison numerically, code unit by code unit, are interoperable in the > sense that implementations will agree in all cases on equality or > inequality of two strings. For example, implementations that compare > strings with escaped characters unconverted may incorrectly find that > `"a\\b"` and `"a\u005Cb"` are not equal. This implementation is interoperable as it does compare strings code unit by code unit. #### Storage String values are stored as pointers in a @ref basic_json type. That is, for any access to string values, a pointer of type `string_t*` must be dereferenced. @since version 1.0.0 */ using string_t = StringType; /*! @brief a type for a boolean [RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a type which differentiates the two literals `true` and `false`. To store objects in C++, a type is defined by the template parameter @a BooleanType which chooses the type to use. #### Default type With the default values for @a BooleanType (`bool`), the default value for @a boolean_t is: @code {.cpp} bool @endcode #### Storage Boolean values are stored directly inside a @ref basic_json type. @since version 1.0.0 */ using boolean_t = BooleanType; /*! @brief a type for a number (integer) [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows: > The representation of numbers is similar to that used in most > programming languages. A number is represented in base 10 using decimal > digits. It contains an integer component that may be prefixed with an > optional minus sign, which may be followed by a fraction part and/or an > exponent part. Leading zeros are not allowed. (...) Numeric values that > cannot be represented in the grammar below (such as Infinity and NaN) > are not permitted. This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, @ref number_integer_t, @ref number_unsigned_t and @ref number_float_t are used. To store integer numbers in C++, a type is defined by the template parameter @a NumberIntegerType which chooses the type to use. #### Default type With the default values for @a NumberIntegerType (`int64_t`), the default value for @a number_integer_t is: @code {.cpp} int64_t @endcode #### Default behavior - The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in integer literals lead to an interpretation as octal number. Internally, the value will be stored as decimal number. For instance, the C++ integer literal `010` will be serialized to `8`. During deserialization, leading zeros yield an error. - Not-a-number (NaN) values will be serialized to `null`. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the range and precision of numbers. When the default type is used, the maximal integer number that can be stored is `9223372036854775807` (INT64_MAX) and the minimal integer number that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers that are out of range will yield over/underflow when used in a constructor. During deserialization, too large or small integer numbers will be automatically be stored as @ref number_unsigned_t or @ref number_float_t. [RFC 7159](http://rfc7159.net/rfc7159) further states: > Note that when such software is used, numbers that are integers and are > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense > that implementations will agree exactly on their numeric values. As this range is a subrange of the exactly supported range [INT64_MIN, INT64_MAX], this class's integer type is interoperable. #### Storage Integer number values are stored directly inside a @ref basic_json type. @sa @ref number_float_t -- type for number values (floating-point) @sa @ref number_unsigned_t -- type for number values (unsigned integer) @since version 1.0.0 */ using number_integer_t = NumberIntegerType; /*! @brief a type for a number (unsigned) [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows: > The representation of numbers is similar to that used in most > programming languages. A number is represented in base 10 using decimal > digits. It contains an integer component that may be prefixed with an > optional minus sign, which may be followed by a fraction part and/or an > exponent part. Leading zeros are not allowed. (...) Numeric values that > cannot be represented in the grammar below (such as Infinity and NaN) > are not permitted. This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, @ref number_integer_t, @ref number_unsigned_t and @ref number_float_t are used. To store unsigned integer numbers in C++, a type is defined by the template parameter @a NumberUnsignedType which chooses the type to use. #### Default type With the default values for @a NumberUnsignedType (`uint64_t`), the default value for @a number_unsigned_t is: @code {.cpp} uint64_t @endcode #### Default behavior - The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in integer literals lead to an interpretation as octal number. Internally, the value will be stored as decimal number. For instance, the C++ integer literal `010` will be serialized to `8`. During deserialization, leading zeros yield an error. - Not-a-number (NaN) values will be serialized to `null`. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) specifies: > An implementation may set limits on the range and precision of numbers. When the default type is used, the maximal integer number that can be stored is `18446744073709551615` (UINT64_MAX) and the minimal integer number that can be stored is `0`. Integer numbers that are out of range will yield over/underflow when used in a constructor. During deserialization, too large or small integer numbers will be automatically be stored as @ref number_integer_t or @ref number_float_t. [RFC 7159](http://rfc7159.net/rfc7159) further states: > Note that when such software is used, numbers that are integers and are > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense > that implementations will agree exactly on their numeric values. As this range is a subrange (when considered in conjunction with the number_integer_t type) of the exactly supported range [0, UINT64_MAX], this class's integer type is interoperable. #### Storage Integer number values are stored directly inside a @ref basic_json type. @sa @ref number_float_t -- type for number values (floating-point) @sa @ref number_integer_t -- type for number values (integer) @since version 2.0.0 */ using number_unsigned_t = NumberUnsignedType; /*! @brief a type for a number (floating-point) [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows: > The representation of numbers is similar to that used in most > programming languages. A number is represented in base 10 using decimal > digits. It contains an integer component that may be prefixed with an > optional minus sign, which may be followed by a fraction part and/or an > exponent part. Leading zeros are not allowed. (...) Numeric values that > cannot be represented in the grammar below (such as Infinity and NaN) > are not permitted. This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, @ref number_integer_t, @ref number_unsigned_t and @ref number_float_t are used. To store floating-point numbers in C++, a type is defined by the template parameter @a NumberFloatType which chooses the type to use. #### Default type With the default values for @a NumberFloatType (`double`), the default value for @a number_float_t is: @code {.cpp} double @endcode #### Default behavior - The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in floating-point literals will be ignored. Internally, the value will be stored as decimal number. For instance, the C++ floating-point literal `01.2` will be serialized to `1.2`. During deserialization, leading zeros yield an error. - Not-a-number (NaN) values will be serialized to `null`. #### Limits [RFC 7159](http://rfc7159.net/rfc7159) states: > This specification allows implementations to set limits on the range and > precision of numbers accepted. Since software that implements IEEE > 754-2008 binary64 (double precision) numbers is generally available and > widely used, good interoperability can be achieved by implementations > that expect no more precision or range than these provide, in the sense > that implementations will approximate JSON numbers within the expected > precision. This implementation does exactly follow this approach, as it uses double precision floating-point numbers. Note values smaller than `-1.79769313486232e+308` and values greater than `1.79769313486232e+308` will be stored as NaN internally and be serialized to `null`. #### Storage Floating-point number values are stored directly inside a @ref basic_json type. @sa @ref number_integer_t -- type for number values (integer) @sa @ref number_unsigned_t -- type for number values (unsigned integer) @since version 1.0.0 */ using number_float_t = NumberFloatType; /// @} private: /// helper for exception-safe object creation template<typename T, typename... Args> static T* create(Args&& ... args) { AllocatorType<T> alloc; using AllocatorTraits = std::allocator_traits<AllocatorType<T>>; auto deleter = [&](T * object) { AllocatorTraits::deallocate(alloc, object, 1); }; std::unique_ptr<T, decltype(deleter)> object(AllocatorTraits::allocate(alloc, 1), deleter); AllocatorTraits::construct(alloc, object.get(), std::forward<Args>(args)...); assert(object != nullptr); return object.release(); } //////////////////////// // JSON value storage // //////////////////////// /*! @brief a JSON value The actual storage for a JSON value of the @ref basic_json class. This union combines the different storage types for the JSON value types defined in @ref value_t. JSON type | value_t type | used type --------- | --------------- | ------------------------ object | object | pointer to @ref object_t array | array | pointer to @ref array_t string | string | pointer to @ref string_t boolean | boolean | @ref boolean_t number | number_integer | @ref number_integer_t number | number_unsigned | @ref number_unsigned_t number | number_float | @ref number_float_t null | null | *no value is stored* @note Variable-length types (objects, arrays, and strings) are stored as pointers. The size of the union should not exceed 64 bits if the default value types are used. @since version 1.0.0 */ union json_value { /// object (stored with pointer to save storage) object_t* object; /// array (stored with pointer to save storage) array_t* array; /// string (stored with pointer to save storage) string_t* string; /// boolean boolean_t boolean; /// number (integer) number_integer_t number_integer; /// number (unsigned integer) number_unsigned_t number_unsigned; /// number (floating-point) number_float_t number_float; /// default constructor (for null values) json_value() = default; /// constructor for booleans json_value(boolean_t v) noexcept : boolean(v) {} /// constructor for numbers (integer) json_value(number_integer_t v) noexcept : number_integer(v) {} /// constructor for numbers (unsigned) json_value(number_unsigned_t v) noexcept : number_unsigned(v) {} /// constructor for numbers (floating-point) json_value(number_float_t v) noexcept : number_float(v) {} /// constructor for empty values of a given type json_value(value_t t) { switch (t) { case value_t::object: { object = create<object_t>(); break; } case value_t::array: { array = create<array_t>(); break; } case value_t::string: { string = create<string_t>(""); break; } case value_t::boolean: { boolean = boolean_t(false); break; } case value_t::number_integer: { number_integer = number_integer_t(0); break; } case value_t::number_unsigned: { number_unsigned = number_unsigned_t(0); break; } case value_t::number_float: { number_float = number_float_t(0.0); break; } case value_t::null: { object = nullptr; // silence warning, see #821 break; } default: { object = nullptr; // silence warning, see #821 if (JSON_UNLIKELY(t == value_t::null)) { JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.6.1")); // LCOV_EXCL_LINE } break; } } } /// constructor for strings json_value(const string_t& value) { string = create<string_t>(value); } /// constructor for rvalue strings json_value(string_t&& value) { string = create<string_t>(std::move(value)); } /// constructor for objects json_value(const object_t& value) { object = create<object_t>(value); } /// constructor for rvalue objects json_value(object_t&& value) { object = create<object_t>(std::move(value)); } /// constructor for arrays json_value(const array_t& value) { array = create<array_t>(value); } /// constructor for rvalue arrays json_value(array_t&& value) { array = create<array_t>(std::move(value)); } void destroy(value_t t) noexcept { switch (t) { case value_t::object: { AllocatorType<object_t> alloc; std::allocator_traits<decltype(alloc)>::destroy(alloc, object); std::allocator_traits<decltype(alloc)>::deallocate(alloc, object, 1); break; } case value_t::array: { AllocatorType<array_t> alloc; std::allocator_traits<decltype(alloc)>::destroy(alloc, array); std::allocator_traits<decltype(alloc)>::deallocate(alloc, array, 1); break; } case value_t::string: { AllocatorType<string_t> alloc; std::allocator_traits<decltype(alloc)>::destroy(alloc, string); std::allocator_traits<decltype(alloc)>::deallocate(alloc, string, 1); break; } default: { break; } } } }; /*! @brief checks the class invariants This function asserts the class invariants. It needs to be called at the end of every constructor to make sure that created objects respect the invariant. Furthermore, it has to be called each time the type of a JSON value is changed, because the invariant expresses a relationship between @a m_type and @a m_value. */ void assert_invariant() const noexcept { assert(m_type != value_t::object or m_value.object != nullptr); assert(m_type != value_t::array or m_value.array != nullptr); assert(m_type != value_t::string or m_value.string != nullptr); } public: ////////////////////////// // JSON parser callback // ////////////////////////// /*! @brief parser event types The parser callback distinguishes the following events: - `object_start`: the parser read `{` and started to process a JSON object - `key`: the parser read a key of a value in an object - `object_end`: the parser read `}` and finished processing a JSON object - `array_start`: the parser read `[` and started to process a JSON array - `array_end`: the parser read `]` and finished processing a JSON array - `value`: the parser finished reading a JSON value @image html callback_events.png "Example when certain parse events are triggered" @sa @ref parser_callback_t for more information and examples */ using parse_event_t = typename parser::parse_event_t; /*! @brief per-element parser callback type With a parser callback function, the result of parsing a JSON text can be influenced. When passed to @ref parse, it is called on certain events (passed as @ref parse_event_t via parameter @a event) with a set recursion depth @a depth and context JSON value @a parsed. The return value of the callback function is a boolean indicating whether the element that emitted the callback shall be kept or not. We distinguish six scenarios (determined by the event type) in which the callback function can be called. The following table describes the values of the parameters @a depth, @a event, and @a parsed. parameter @a event | description | parameter @a depth | parameter @a parsed ------------------ | ----------- | ------------------ | ------------------- parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value @image html callback_events.png "Example when certain parse events are triggered" Discarding a value (i.e., returning `false`) has different effects depending on the context in which function was called: - Discarded values in structured types are skipped. That is, the parser will behave as if the discarded value was never read. - In case a value outside a structured type is skipped, it is replaced with `null`. This case happens if the top-level element is skipped. @param[in] depth the depth of the recursion during parsing @param[in] event an event of type parse_event_t indicating the context in the callback function has been called @param[in,out] parsed the current intermediate parse result; note that writing to this value has no effect for parse_event_t::key events @return Whether the JSON value which called the function during parsing should be kept (`true`) or not (`false`). In the latter case, it is either skipped completely or replaced by an empty discarded object. @sa @ref parse for examples @since version 1.0.0 */ using parser_callback_t = typename parser::parser_callback_t; ////////////////// // constructors // ////////////////// /// @name constructors and destructors /// Constructors of class @ref basic_json, copy/move constructor, copy /// assignment, static functions creating objects, and the destructor. /// @{ /*! @brief create an empty value with a given type Create an empty JSON value with a given type. The value will be default initialized with an empty value which depends on the type: Value type | initial value ----------- | ------------- null | `null` boolean | `false` string | `""` number | `0` object | `{}` array | `[]` @param[in] v the type of the value to create @complexity Constant. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @liveexample{The following code shows the constructor for different @ref value_t values,basic_json__value_t} @sa @ref clear() -- restores the postcondition of this constructor @since version 1.0.0 */ basic_json(const value_t v) : m_type(v), m_value(v) { assert_invariant(); } /*! @brief create a null object Create a `null` JSON value. It either takes a null pointer as parameter (explicitly creating `null`) or no parameter (implicitly creating `null`). The passed null pointer itself is not read -- it is only used to choose the right constructor. @complexity Constant. @exceptionsafety No-throw guarantee: this constructor never throws exceptions. @liveexample{The following code shows the constructor with and without a null pointer parameter.,basic_json__nullptr_t} @since version 1.0.0 */ basic_json(std::nullptr_t = nullptr) noexcept : basic_json(value_t::null) { assert_invariant(); } /*! @brief create a JSON value This is a "catch all" constructor for all compatible JSON types; that is, types for which a `to_json()` method exists. The constructor forwards the parameter @a val to that method (to `json_serializer<U>::to_json` method with `U = uncvref_t<CompatibleType>`, to be exact). Template type @a CompatibleType includes, but is not limited to, the following types: - **arrays**: @ref array_t and all kinds of compatible containers such as `std::vector`, `std::deque`, `std::list`, `std::forward_list`, `std::array`, `std::valarray`, `std::set`, `std::unordered_set`, `std::multiset`, and `std::unordered_multiset` with a `value_type` from which a @ref basic_json value can be constructed. - **objects**: @ref object_t and all kinds of compatible associative containers such as `std::map`, `std::unordered_map`, `std::multimap`, and `std::unordered_multimap` with a `key_type` compatible to @ref string_t and a `value_type` from which a @ref basic_json value can be constructed. - **strings**: @ref string_t, string literals, and all compatible string containers can be used. - **numbers**: @ref number_integer_t, @ref number_unsigned_t, @ref number_float_t, and all convertible number types such as `int`, `size_t`, `int64_t`, `float` or `double` can be used. - **boolean**: @ref boolean_t / `bool` can be used. See the examples below. @tparam CompatibleType a type such that: - @a CompatibleType is not derived from `std::istream`, - @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move constructors), - @a CompatibleType is not a different @ref basic_json type (i.e. with different template arguments) - @a CompatibleType is not a @ref basic_json nested type (e.g., @ref json_pointer, @ref iterator, etc ...) - @ref @ref json_serializer<U> has a `to_json(basic_json_t&, CompatibleType&&)` method @tparam U = `uncvref_t<CompatibleType>` @param[in] val the value to be forwarded to the respective constructor @complexity Usually linear in the size of the passed @a val, also depending on the implementation of the called `to_json()` method. @exceptionsafety Depends on the called constructor. For types directly supported by the library (i.e., all types for which no `to_json()` function was provided), strong guarantee holds: if an exception is thrown, there are no changes to any JSON value. @liveexample{The following code shows the constructor with several compatible types.,basic_json__CompatibleType} @since version 2.1.0 */ template <typename CompatibleType, typename U = detail::uncvref_t<CompatibleType>, detail::enable_if_t< not detail::is_basic_json<U>::value and detail::is_compatible_type<basic_json_t, U>::value, int> = 0> basic_json(CompatibleType && val) noexcept(noexcept( JSONSerializer<U>::to_json(std::declval<basic_json_t&>(), std::forward<CompatibleType>(val)))) { JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val)); assert_invariant(); } /*! @brief create a JSON value from an existing one This is a constructor for existing @ref basic_json types. It does not hijack copy/move constructors, since the parameter has different template arguments than the current ones. The constructor tries to convert the internal @ref m_value of the parameter. @tparam BasicJsonType a type such that: - @a BasicJsonType is a @ref basic_json type. - @a BasicJsonType has different template arguments than @ref basic_json_t. @param[in] val the @ref basic_json value to be converted. @complexity Usually linear in the size of the passed @a val, also depending on the implementation of the called `to_json()` method. @exceptionsafety Depends on the called constructor. For types directly supported by the library (i.e., all types for which no `to_json()` function was provided), strong guarantee holds: if an exception is thrown, there are no changes to any JSON value. @since version 3.2.0 */ template <typename BasicJsonType, detail::enable_if_t< detail::is_basic_json<BasicJsonType>::value and not std::is_same<basic_json, BasicJsonType>::value, int> = 0> basic_json(const BasicJsonType& val) { using other_boolean_t = typename BasicJsonType::boolean_t; using other_number_float_t = typename BasicJsonType::number_float_t; using other_number_integer_t = typename BasicJsonType::number_integer_t; using other_number_unsigned_t = typename BasicJsonType::number_unsigned_t; using other_string_t = typename BasicJsonType::string_t; using other_object_t = typename BasicJsonType::object_t; using other_array_t = typename BasicJsonType::array_t; switch (val.type()) { case value_t::boolean: JSONSerializer<other_boolean_t>::to_json(*this, val.template get<other_boolean_t>()); break; case value_t::number_float: JSONSerializer<other_number_float_t>::to_json(*this, val.template get<other_number_float_t>()); break; case value_t::number_integer: JSONSerializer<other_number_integer_t>::to_json(*this, val.template get<other_number_integer_t>()); break; case value_t::number_unsigned: JSONSerializer<other_number_unsigned_t>::to_json(*this, val.template get<other_number_unsigned_t>()); break; case value_t::string: JSONSerializer<other_string_t>::to_json(*this, val.template get_ref<const other_string_t&>()); break; case value_t::object: JSONSerializer<other_object_t>::to_json(*this, val.template get_ref<const other_object_t&>()); break; case value_t::array: JSONSerializer<other_array_t>::to_json(*this, val.template get_ref<const other_array_t&>()); break; case value_t::null: *this = nullptr; break; case value_t::discarded: m_type = value_t::discarded; break; default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } assert_invariant(); } /*! @brief create a container (array or object) from an initializer list Creates a JSON value of type array or object from the passed initializer list @a init. In case @a type_deduction is `true` (default), the type of the JSON value to be created is deducted from the initializer list @a init according to the following rules: 1. If the list is empty, an empty JSON object value `{}` is created. 2. If the list consists of pairs whose first element is a string, a JSON object value is created where the first elements of the pairs are treated as keys and the second elements are as values. 3. In all other cases, an array is created. The rules aim to create the best fit between a C++ initializer list and JSON values. The rationale is as follows: 1. The empty initializer list is written as `{}` which is exactly an empty JSON object. 2. C++ has no way of describing mapped types other than to list a list of pairs. As JSON requires that keys must be of type string, rule 2 is the weakest constraint one can pose on initializer lists to interpret them as an object. 3. In all other cases, the initializer list could not be interpreted as JSON object type, so interpreting it as JSON array type is safe. With the rules described above, the following JSON values cannot be expressed by an initializer list: - the empty array (`[]`): use @ref array(initializer_list_t) with an empty initializer list in this case - arrays whose elements satisfy rule 2: use @ref array(initializer_list_t) with the same initializer list in this case @note When used without parentheses around an empty initializer list, @ref basic_json() is called instead of this function, yielding the JSON null value. @param[in] init initializer list with JSON values @param[in] type_deduction internal parameter; when set to `true`, the type of the JSON value is deducted from the initializer list @a init; when set to `false`, the type provided via @a manual_type is forced. This mode is used by the functions @ref array(initializer_list_t) and @ref object(initializer_list_t). @param[in] manual_type internal parameter; when @a type_deduction is set to `false`, the created JSON value will use the provided type (only @ref value_t::array and @ref value_t::object are valid); when @a type_deduction is set to `true`, this parameter has no effect @throw type_error.301 if @a type_deduction is `false`, @a manual_type is `value_t::object`, but @a init contains an element which is not a pair whose first element is a string. In this case, the constructor could not create an object. If @a type_deduction would have be `true`, an array would have been created. See @ref object(initializer_list_t) for an example. @complexity Linear in the size of the initializer list @a init. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @liveexample{The example below shows how JSON values are created from initializer lists.,basic_json__list_init_t} @sa @ref array(initializer_list_t) -- create a JSON array value from an initializer list @sa @ref object(initializer_list_t) -- create a JSON object value from an initializer list @since version 1.0.0 */ basic_json(initializer_list_t init, bool type_deduction = true, value_t manual_type = value_t::array) { // check if each element is an array with two elements whose first // element is a string bool is_an_object = std::all_of(init.begin(), init.end(), [](const detail::json_ref<basic_json>& element_ref) { return element_ref->is_array() and element_ref->size() == 2 and (*element_ref)[0].is_string(); }); // adjust type if type deduction is not wanted if (not type_deduction) { // if array is wanted, do not create an object though possible if (manual_type == value_t::array) { is_an_object = false; } // if object is wanted but impossible, throw an exception if (JSON_UNLIKELY(manual_type == value_t::object and not is_an_object)) { JSON_THROW(type_error::create(301, "cannot create object from initializer list")); } } if (is_an_object) { // the initializer list is a list of pairs -> create object m_type = value_t::object; m_value = value_t::object; std::for_each(init.begin(), init.end(), [this](const detail::json_ref<basic_json>& element_ref) { auto element = element_ref.moved_or_copied(); m_value.object->emplace( std::move(*((*element.m_value.array)[0].m_value.string)), std::move((*element.m_value.array)[1])); }); } else { // the initializer list describes an array -> create array m_type = value_t::array; m_value.array = create<array_t>(init.begin(), init.end()); } assert_invariant(); } /*! @brief explicitly create an array from an initializer list Creates a JSON array value from a given initializer list. That is, given a list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the initializer list is empty, the empty array `[]` is created. @note This function is only needed to express two edge cases that cannot be realized with the initializer list constructor (@ref basic_json(initializer_list_t, bool, value_t)). These cases are: 1. creating an array whose elements are all pairs whose first element is a string -- in this case, the initializer list constructor would create an object, taking the first elements as keys 2. creating an empty array -- passing the empty initializer list to the initializer list constructor yields an empty object @param[in] init initializer list with JSON values to create an array from (optional) @return JSON array value @complexity Linear in the size of @a init. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @liveexample{The following code shows an example for the `array` function.,array} @sa @ref basic_json(initializer_list_t, bool, value_t) -- create a JSON value from an initializer list @sa @ref object(initializer_list_t) -- create a JSON object value from an initializer list @since version 1.0.0 */ JSON_NODISCARD static basic_json array(initializer_list_t init = {}) { return basic_json(init, false, value_t::array); } /*! @brief explicitly create an object from an initializer list Creates a JSON object value from a given initializer list. The initializer lists elements must be pairs, and their first elements must be strings. If the initializer list is empty, the empty object `{}` is created. @note This function is only added for symmetry reasons. In contrast to the related function @ref array(initializer_list_t), there are no cases which can only be expressed by this function. That is, any initializer list @a init can also be passed to the initializer list constructor @ref basic_json(initializer_list_t, bool, value_t). @param[in] init initializer list to create an object from (optional) @return JSON object value @throw type_error.301 if @a init is not a list of pairs whose first elements are strings. In this case, no object can be created. When such a value is passed to @ref basic_json(initializer_list_t, bool, value_t), an array would have been created from the passed initializer list @a init. See example below. @complexity Linear in the size of @a init. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @liveexample{The following code shows an example for the `object` function.,object} @sa @ref basic_json(initializer_list_t, bool, value_t) -- create a JSON value from an initializer list @sa @ref array(initializer_list_t) -- create a JSON array value from an initializer list @since version 1.0.0 */ JSON_NODISCARD static basic_json object(initializer_list_t init = {}) { return basic_json(init, false, value_t::object); } /*! @brief construct an array with count copies of given value Constructs a JSON array value by creating @a cnt copies of a passed value. In case @a cnt is `0`, an empty array is created. @param[in] cnt the number of JSON copies of @a val to create @param[in] val the JSON value to copy @post `std::distance(begin(),end()) == cnt` holds. @complexity Linear in @a cnt. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @liveexample{The following code shows examples for the @ref basic_json(size_type\, const basic_json&) constructor.,basic_json__size_type_basic_json} @since version 1.0.0 */ basic_json(size_type cnt, const basic_json& val) : m_type(value_t::array) { m_value.array = create<array_t>(cnt, val); assert_invariant(); } /*! @brief construct a JSON container given an iterator range Constructs the JSON value with the contents of the range `[first, last)`. The semantics depends on the different types a JSON value can have: - In case of a null type, invalid_iterator.206 is thrown. - In case of other primitive types (number, boolean, or string), @a first must be `begin()` and @a last must be `end()`. In this case, the value is copied. Otherwise, invalid_iterator.204 is thrown. - In case of structured types (array, object), the constructor behaves as similar versions for `std::vector` or `std::map`; that is, a JSON array or object is constructed from the values in the range. @tparam InputIT an input iterator type (@ref iterator or @ref const_iterator) @param[in] first begin of the range to copy from (included) @param[in] last end of the range to copy from (excluded) @pre Iterators @a first and @a last must be initialized. **This precondition is enforced with an assertion (see warning).** If assertions are switched off, a violation of this precondition yields undefined behavior. @pre Range `[first, last)` is valid. Usually, this precondition cannot be checked efficiently. Only certain edge cases are detected; see the description of the exceptions below. A violation of this precondition yields undefined behavior. @warning A precondition is enforced with a runtime assertion that will result in calling `std::abort` if this precondition is not met. Assertions can be disabled by defining `NDEBUG` at compile time. See https://en.cppreference.com/w/cpp/error/assert for more information. @throw invalid_iterator.201 if iterators @a first and @a last are not compatible (i.e., do not belong to the same JSON value). In this case, the range `[first, last)` is undefined. @throw invalid_iterator.204 if iterators @a first and @a last belong to a primitive type (number, boolean, or string), but @a first does not point to the first element any more. In this case, the range `[first, last)` is undefined. See example code below. @throw invalid_iterator.206 if iterators @a first and @a last belong to a null value. In this case, the range `[first, last)` is undefined. @complexity Linear in distance between @a first and @a last. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @liveexample{The example below shows several ways to create JSON values by specifying a subrange with iterators.,basic_json__InputIt_InputIt} @since version 1.0.0 */ template<class InputIT, typename std::enable_if< std::is_same<InputIT, typename basic_json_t::iterator>::value or std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0> basic_json(InputIT first, InputIT last) { assert(first.m_object != nullptr); assert(last.m_object != nullptr); // make sure iterator fits the current value if (JSON_UNLIKELY(first.m_object != last.m_object)) { JSON_THROW(invalid_iterator::create(201, "iterators are not compatible")); } // copy type from first iterator m_type = first.m_object->m_type; // check if iterator range is complete for primitive values switch (m_type) { case value_t::boolean: case value_t::number_float: case value_t::number_integer: case value_t::number_unsigned: case value_t::string: { if (JSON_UNLIKELY(not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end())) { JSON_THROW(invalid_iterator::create(204, "iterators out of range")); } break; } default: break; } switch (m_type) { case value_t::number_integer: { m_value.number_integer = first.m_object->m_value.number_integer; break; } case value_t::number_unsigned: { m_value.number_unsigned = first.m_object->m_value.number_unsigned; break; } case value_t::number_float: { m_value.number_float = first.m_object->m_value.number_float; break; } case value_t::boolean: { m_value.boolean = first.m_object->m_value.boolean; break; } case value_t::string: { m_value = *first.m_object->m_value.string; break; } case value_t::object: { m_value.object = create<object_t>(first.m_it.object_iterator, last.m_it.object_iterator); break; } case value_t::array: { m_value.array = create<array_t>(first.m_it.array_iterator, last.m_it.array_iterator); break; } default: JSON_THROW(invalid_iterator::create(206, "cannot construct with iterators from " + std::string(first.m_object->type_name()))); } assert_invariant(); } /////////////////////////////////////// // other constructors and destructor // /////////////////////////////////////// /// @private basic_json(const detail::json_ref<basic_json>& ref) : basic_json(ref.moved_or_copied()) {} /*! @brief copy constructor Creates a copy of a given JSON value. @param[in] other the JSON value to copy @post `*this == other` @complexity Linear in the size of @a other. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes to any JSON value. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is linear. - As postcondition, it holds: `other == basic_json(other)`. @liveexample{The following code shows an example for the copy constructor.,basic_json__basic_json} @since version 1.0.0 */ basic_json(const basic_json& other) : m_type(other.m_type) { // check of passed value is valid other.assert_invariant(); switch (m_type) { case value_t::object: { m_value = *other.m_value.object; break; } case value_t::array: { m_value = *other.m_value.array; break; } case value_t::string: { m_value = *other.m_value.string; break; } case value_t::boolean: { m_value = other.m_value.boolean; break; } case value_t::number_integer: { m_value = other.m_value.number_integer; break; } case value_t::number_unsigned: { m_value = other.m_value.number_unsigned; break; } case value_t::number_float: { m_value = other.m_value.number_float; break; } default: break; } assert_invariant(); } /*! @brief move constructor Move constructor. Constructs a JSON value with the contents of the given value @a other using move semantics. It "steals" the resources from @a other and leaves it as JSON null value. @param[in,out] other value to move to this object @post `*this` has the same value as @a other before the call. @post @a other is a JSON null value. @complexity Constant. @exceptionsafety No-throw guarantee: this constructor never throws exceptions. @requirement This function helps `basic_json` satisfying the [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible) requirements. @liveexample{The code below shows the move constructor explicitly called via std::move.,basic_json__moveconstructor} @since version 1.0.0 */ basic_json(basic_json&& other) noexcept : m_type(std::move(other.m_type)), m_value(std::move(other.m_value)) { // check that passed value is valid other.assert_invariant(); // invalidate payload other.m_type = value_t::null; other.m_value = {}; assert_invariant(); } /*! @brief copy assignment Copy assignment operator. Copies a JSON value via the "copy and swap" strategy: It is expressed in terms of the copy constructor, destructor, and the `swap()` member function. @param[in] other value to copy from @complexity Linear. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is linear. @liveexample{The code below shows and example for the copy assignment. It creates a copy of value `a` which is then swapped with `b`. Finally\, the copy of `a` (which is the null value after the swap) is destroyed.,basic_json__copyassignment} @since version 1.0.0 */ basic_json& operator=(basic_json other) noexcept ( std::is_nothrow_move_constructible<value_t>::value and std::is_nothrow_move_assignable<value_t>::value and std::is_nothrow_move_constructible<json_value>::value and std::is_nothrow_move_assignable<json_value>::value ) { // check that passed value is valid other.assert_invariant(); using std::swap; swap(m_type, other.m_type); swap(m_value, other.m_value); assert_invariant(); return *this; } /*! @brief destructor Destroys the JSON value and frees all allocated memory. @complexity Linear. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is linear. - All stored elements are destroyed and all memory is freed. @since version 1.0.0 */ ~basic_json() noexcept { assert_invariant(); m_value.destroy(m_type); } /// @} public: /////////////////////// // object inspection // /////////////////////// /// @name object inspection /// Functions to inspect the type of a JSON value. /// @{ /*! @brief serialization Serialization function for JSON values. The function tries to mimic Python's `json.dumps()` function, and currently supports its @a indent and @a ensure_ascii parameters. @param[in] indent If indent is nonnegative, then array elements and object members will be pretty-printed with that indent level. An indent level of `0` will only insert newlines. `-1` (the default) selects the most compact representation. @param[in] indent_char The character to use for indentation if @a indent is greater than `0`. The default is ` ` (space). @param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters in the output are escaped with `\uXXXX` sequences, and the result consists of ASCII characters only. @param[in] error_handler how to react on decoding errors; there are three possible values: `strict` (throws and exception in case a decoding error occurs; default), `replace` (replace invalid UTF-8 sequences with U+FFFD), and `ignore` (ignore invalid UTF-8 sequences during serialization). @return string containing the serialization of the JSON value @throw type_error.316 if a string stored inside the JSON value is not UTF-8 encoded @complexity Linear. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @liveexample{The following example shows the effect of different @a indent\, @a indent_char\, and @a ensure_ascii parameters to the result of the serialization.,dump} @see https://docs.python.org/2/library/json.html#json.dump @since version 1.0.0; indentation character @a indent_char, option @a ensure_ascii and exceptions added in version 3.0.0; error handlers added in version 3.4.0. */ string_t dump(const int indent = -1, const char indent_char = ' ', const bool ensure_ascii = false, const error_handler_t error_handler = error_handler_t::strict) const { string_t result; serializer s(detail::output_adapter<char, string_t>(result), indent_char, error_handler); if (indent >= 0) { s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent)); } else { s.dump(*this, false, ensure_ascii, 0); } return result; } /*! @brief return the type of the JSON value (explicit) Return the type of the JSON value as a value from the @ref value_t enumeration. @return the type of the JSON value Value type | return value ------------------------- | ------------------------- null | value_t::null boolean | value_t::boolean string | value_t::string number (integer) | value_t::number_integer number (unsigned integer) | value_t::number_unsigned number (floating-point) | value_t::number_float object | value_t::object array | value_t::array discarded | value_t::discarded @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `type()` for all JSON types.,type} @sa @ref operator value_t() -- return the type of the JSON value (implicit) @sa @ref type_name() -- return the type as string @since version 1.0.0 */ constexpr value_t type() const noexcept { return m_type; } /*! @brief return whether type is primitive This function returns true if and only if the JSON type is primitive (string, number, boolean, or null). @return `true` if type is primitive (string, number, boolean, or null), `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_primitive()` for all JSON types.,is_primitive} @sa @ref is_structured() -- returns whether JSON value is structured @sa @ref is_null() -- returns whether JSON value is `null` @sa @ref is_string() -- returns whether JSON value is a string @sa @ref is_boolean() -- returns whether JSON value is a boolean @sa @ref is_number() -- returns whether JSON value is a number @since version 1.0.0 */ constexpr bool is_primitive() const noexcept { return is_null() or is_string() or is_boolean() or is_number(); } /*! @brief return whether type is structured This function returns true if and only if the JSON type is structured (array or object). @return `true` if type is structured (array or object), `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_structured()` for all JSON types.,is_structured} @sa @ref is_primitive() -- returns whether value is primitive @sa @ref is_array() -- returns whether value is an array @sa @ref is_object() -- returns whether value is an object @since version 1.0.0 */ constexpr bool is_structured() const noexcept { return is_array() or is_object(); } /*! @brief return whether value is null This function returns true if and only if the JSON value is null. @return `true` if type is null, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_null()` for all JSON types.,is_null} @since version 1.0.0 */ constexpr bool is_null() const noexcept { return m_type == value_t::null; } /*! @brief return whether value is a boolean This function returns true if and only if the JSON value is a boolean. @return `true` if type is boolean, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_boolean()` for all JSON types.,is_boolean} @since version 1.0.0 */ constexpr bool is_boolean() const noexcept { return m_type == value_t::boolean; } /*! @brief return whether value is a number This function returns true if and only if the JSON value is a number. This includes both integer (signed and unsigned) and floating-point values. @return `true` if type is number (regardless whether integer, unsigned integer or floating-type), `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number()` for all JSON types.,is_number} @sa @ref is_number_integer() -- check if value is an integer or unsigned integer number @sa @ref is_number_unsigned() -- check if value is an unsigned integer number @sa @ref is_number_float() -- check if value is a floating-point number @since version 1.0.0 */ constexpr bool is_number() const noexcept { return is_number_integer() or is_number_float(); } /*! @brief return whether value is an integer number This function returns true if and only if the JSON value is a signed or unsigned integer number. This excludes floating-point values. @return `true` if type is an integer or unsigned integer number, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number_integer()` for all JSON types.,is_number_integer} @sa @ref is_number() -- check if value is a number @sa @ref is_number_unsigned() -- check if value is an unsigned integer number @sa @ref is_number_float() -- check if value is a floating-point number @since version 1.0.0 */ constexpr bool is_number_integer() const noexcept { return m_type == value_t::number_integer or m_type == value_t::number_unsigned; } /*! @brief return whether value is an unsigned integer number This function returns true if and only if the JSON value is an unsigned integer number. This excludes floating-point and signed integer values. @return `true` if type is an unsigned integer number, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number_unsigned()` for all JSON types.,is_number_unsigned} @sa @ref is_number() -- check if value is a number @sa @ref is_number_integer() -- check if value is an integer or unsigned integer number @sa @ref is_number_float() -- check if value is a floating-point number @since version 2.0.0 */ constexpr bool is_number_unsigned() const noexcept { return m_type == value_t::number_unsigned; } /*! @brief return whether value is a floating-point number This function returns true if and only if the JSON value is a floating-point number. This excludes signed and unsigned integer values. @return `true` if type is a floating-point number, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_number_float()` for all JSON types.,is_number_float} @sa @ref is_number() -- check if value is number @sa @ref is_number_integer() -- check if value is an integer number @sa @ref is_number_unsigned() -- check if value is an unsigned integer number @since version 1.0.0 */ constexpr bool is_number_float() const noexcept { return m_type == value_t::number_float; } /*! @brief return whether value is an object This function returns true if and only if the JSON value is an object. @return `true` if type is object, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_object()` for all JSON types.,is_object} @since version 1.0.0 */ constexpr bool is_object() const noexcept { return m_type == value_t::object; } /*! @brief return whether value is an array This function returns true if and only if the JSON value is an array. @return `true` if type is array, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_array()` for all JSON types.,is_array} @since version 1.0.0 */ constexpr bool is_array() const noexcept { return m_type == value_t::array; } /*! @brief return whether value is a string This function returns true if and only if the JSON value is a string. @return `true` if type is string, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_string()` for all JSON types.,is_string} @since version 1.0.0 */ constexpr bool is_string() const noexcept { return m_type == value_t::string; } /*! @brief return whether value is discarded This function returns true if and only if the JSON value was discarded during parsing with a callback function (see @ref parser_callback_t). @note This function will always be `false` for JSON values after parsing. That is, discarded values can only occur during parsing, but will be removed when inside a structured value or replaced by null in other cases. @return `true` if type is discarded, `false` otherwise. @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies `is_discarded()` for all JSON types.,is_discarded} @since version 1.0.0 */ constexpr bool is_discarded() const noexcept { return m_type == value_t::discarded; } /*! @brief return the type of the JSON value (implicit) Implicitly return the type of the JSON value as a value from the @ref value_t enumeration. @return the type of the JSON value @complexity Constant. @exceptionsafety No-throw guarantee: this member function never throws exceptions. @liveexample{The following code exemplifies the @ref value_t operator for all JSON types.,operator__value_t} @sa @ref type() -- return the type of the JSON value (explicit) @sa @ref type_name() -- return the type as string @since version 1.0.0 */ constexpr operator value_t() const noexcept { return m_type; } /// @} private: ////////////////// // value access // ////////////////// /// get a boolean (explicit) boolean_t get_impl(boolean_t* /*unused*/) const { if (JSON_LIKELY(is_boolean())) { return m_value.boolean; } JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(type_name()))); } /// get a pointer to the value (object) object_t* get_impl_ptr(object_t* /*unused*/) noexcept { return is_object() ? m_value.object : nullptr; } /// get a pointer to the value (object) constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept { return is_object() ? m_value.object : nullptr; } /// get a pointer to the value (array) array_t* get_impl_ptr(array_t* /*unused*/) noexcept { return is_array() ? m_value.array : nullptr; } /// get a pointer to the value (array) constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept { return is_array() ? m_value.array : nullptr; } /// get a pointer to the value (string) string_t* get_impl_ptr(string_t* /*unused*/) noexcept { return is_string() ? m_value.string : nullptr; } /// get a pointer to the value (string) constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept { return is_string() ? m_value.string : nullptr; } /// get a pointer to the value (boolean) boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept { return is_boolean() ? &m_value.boolean : nullptr; } /// get a pointer to the value (boolean) constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept { return is_boolean() ? &m_value.boolean : nullptr; } /// get a pointer to the value (integer number) number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept { return is_number_integer() ? &m_value.number_integer : nullptr; } /// get a pointer to the value (integer number) constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept { return is_number_integer() ? &m_value.number_integer : nullptr; } /// get a pointer to the value (unsigned number) number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept { return is_number_unsigned() ? &m_value.number_unsigned : nullptr; } /// get a pointer to the value (unsigned number) constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept { return is_number_unsigned() ? &m_value.number_unsigned : nullptr; } /// get a pointer to the value (floating-point number) number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept { return is_number_float() ? &m_value.number_float : nullptr; } /// get a pointer to the value (floating-point number) constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept { return is_number_float() ? &m_value.number_float : nullptr; } /*! @brief helper function to implement get_ref() This function helps to implement get_ref() without code duplication for const and non-const overloads @tparam ThisType will be deduced as `basic_json` or `const basic_json` @throw type_error.303 if ReferenceType does not match underlying value type of the current JSON */ template<typename ReferenceType, typename ThisType> static ReferenceType get_ref_impl(ThisType& obj) { // delegate the call to get_ptr<>() auto ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>(); if (JSON_LIKELY(ptr != nullptr)) { return *ptr; } JSON_THROW(type_error::create(303, "incompatible ReferenceType for get_ref, actual type is " + std::string(obj.type_name()))); } public: /// @name value access /// Direct access to the stored value of a JSON value. /// @{ /*! @brief get special-case overload This overloads avoids a lot of template boilerplate, it can be seen as the identity method @tparam BasicJsonType == @ref basic_json @return a copy of *this @complexity Constant. @since version 2.1.0 */ template<typename BasicJsonType, detail::enable_if_t< std::is_same<typename std::remove_const<BasicJsonType>::type, basic_json_t>::value, int> = 0> basic_json get() const { return *this; } /*! @brief get special-case overload This overloads converts the current @ref basic_json in a different @ref basic_json type @tparam BasicJsonType == @ref basic_json @return a copy of *this, converted into @tparam BasicJsonType @complexity Depending on the implementation of the called `from_json()` method. @since version 3.2.0 */ template<typename BasicJsonType, detail::enable_if_t< not std::is_same<BasicJsonType, basic_json>::value and detail::is_basic_json<BasicJsonType>::value, int> = 0> BasicJsonType get() const { return *this; } /*! @brief get a value (explicit) Explicit type conversion between the JSON value and a compatible value which is [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible) and [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible). The value is converted by calling the @ref json_serializer<ValueType> `from_json()` method. The function is equivalent to executing @code {.cpp} ValueType ret; JSONSerializer<ValueType>::from_json(*this, ret); return ret; @endcode This overloads is chosen if: - @a ValueType is not @ref basic_json, - @ref json_serializer<ValueType> has a `from_json()` method of the form `void from_json(const basic_json&, ValueType&)`, and - @ref json_serializer<ValueType> does not have a `from_json()` method of the form `ValueType from_json(const basic_json&)` @tparam ValueTypeCV the provided value type @tparam ValueType the returned value type @return copy of the JSON value, converted to @a ValueType @throw what @ref json_serializer<ValueType> `from_json()` method throws @liveexample{The example below shows several conversions from JSON values to other types. There a few things to note: (1) Floating-point numbers can be converted to integers\, (2) A JSON array can be converted to a standard `std::vector<short>`\, (3) A JSON object can be converted to C++ associative containers such as `std::unordered_map<std::string\, json>`.,get__ValueType_const} @since version 2.1.0 */ template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>, detail::enable_if_t < not detail::is_basic_json<ValueType>::value and detail::has_from_json<basic_json_t, ValueType>::value and not detail::has_non_default_from_json<basic_json_t, ValueType>::value, int> = 0> ValueType get() const noexcept(noexcept( JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>()))) { // we cannot static_assert on ValueTypeCV being non-const, because // there is support for get<const basic_json_t>(), which is why we // still need the uncvref static_assert(not std::is_reference<ValueTypeCV>::value, "get() cannot be used with reference types, you might want to use get_ref()"); static_assert(std::is_default_constructible<ValueType>::value, "types must be DefaultConstructible when used with get()"); ValueType ret; JSONSerializer<ValueType>::from_json(*this, ret); return ret; } /*! @brief get a value (explicit); special case Explicit type conversion between the JSON value and a compatible value which is **not** [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible) and **not** [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible). The value is converted by calling the @ref json_serializer<ValueType> `from_json()` method. The function is equivalent to executing @code {.cpp} return JSONSerializer<ValueTypeCV>::from_json(*this); @endcode This overloads is chosen if: - @a ValueType is not @ref basic_json and - @ref json_serializer<ValueType> has a `from_json()` method of the form `ValueType from_json(const basic_json&)` @note If @ref json_serializer<ValueType> has both overloads of `from_json()`, this one is chosen. @tparam ValueTypeCV the provided value type @tparam ValueType the returned value type @return copy of the JSON value, converted to @a ValueType @throw what @ref json_serializer<ValueType> `from_json()` method throws @since version 2.1.0 */ template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>, detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and detail::has_non_default_from_json<basic_json_t, ValueType>::value, int> = 0> ValueType get() const noexcept(noexcept( JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>()))) { static_assert(not std::is_reference<ValueTypeCV>::value, "get() cannot be used with reference types, you might want to use get_ref()"); return JSONSerializer<ValueTypeCV>::from_json(*this); } /*! @brief get a value (explicit) Explicit type conversion between the JSON value and a compatible value. The value is filled into the input parameter by calling the @ref json_serializer<ValueType> `from_json()` method. The function is equivalent to executing @code {.cpp} ValueType v; JSONSerializer<ValueType>::from_json(*this, v); @endcode This overloads is chosen if: - @a ValueType is not @ref basic_json, - @ref json_serializer<ValueType> has a `from_json()` method of the form `void from_json(const basic_json&, ValueType&)`, and @tparam ValueType the input parameter type. @return the input parameter, allowing chaining calls. @throw what @ref json_serializer<ValueType> `from_json()` method throws @liveexample{The example below shows several conversions from JSON values to other types. There a few things to note: (1) Floating-point numbers can be converted to integers\, (2) A JSON array can be converted to a standard `std::vector<short>`\, (3) A JSON object can be converted to C++ associative containers such as `std::unordered_map<std::string\, json>`.,get_to} @since version 3.3.0 */ template<typename ValueType, detail::enable_if_t < not detail::is_basic_json<ValueType>::value and detail::has_from_json<basic_json_t, ValueType>::value, int> = 0> ValueType & get_to(ValueType& v) const noexcept(noexcept( JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), v))) { JSONSerializer<ValueType>::from_json(*this, v); return v; } /*! @brief get a pointer value (implicit) Implicit pointer access to the internally stored JSON value. No copies are made. @warning Writing data to the pointee of the result yields an undefined state. @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, @ref number_unsigned_t, or @ref number_float_t. Enforced by a static assertion. @return pointer to the internally stored JSON value if the requested pointer type @a PointerType fits to the JSON value; `nullptr` otherwise @complexity Constant. @liveexample{The example below shows how pointers to internal values of a JSON value can be requested. Note that no type conversions are made and a `nullptr` is returned if the value and the requested pointer type does not match.,get_ptr} @since version 1.0.0 */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value, int>::type = 0> auto get_ptr() noexcept -> decltype(std::declval<basic_json_t&>().get_impl_ptr(std::declval<PointerType>())) { // delegate the call to get_impl_ptr<>() return get_impl_ptr(static_cast<PointerType>(nullptr)); } /*! @brief get a pointer value (implicit) @copydoc get_ptr() */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value and std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0> constexpr auto get_ptr() const noexcept -> decltype(std::declval<const basic_json_t&>().get_impl_ptr(std::declval<PointerType>())) { // delegate the call to get_impl_ptr<>() const return get_impl_ptr(static_cast<PointerType>(nullptr)); } /*! @brief get a pointer value (explicit) Explicit pointer access to the internally stored JSON value. No copies are made. @warning The pointer becomes invalid if the underlying JSON object changes. @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, @ref number_unsigned_t, or @ref number_float_t. @return pointer to the internally stored JSON value if the requested pointer type @a PointerType fits to the JSON value; `nullptr` otherwise @complexity Constant. @liveexample{The example below shows how pointers to internal values of a JSON value can be requested. Note that no type conversions are made and a `nullptr` is returned if the value and the requested pointer type does not match.,get__PointerType} @sa @ref get_ptr() for explicit pointer-member access @since version 1.0.0 */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value, int>::type = 0> auto get() noexcept -> decltype(std::declval<basic_json_t&>().template get_ptr<PointerType>()) { // delegate the call to get_ptr return get_ptr<PointerType>(); } /*! @brief get a pointer value (explicit) @copydoc get() */ template<typename PointerType, typename std::enable_if< std::is_pointer<PointerType>::value, int>::type = 0> constexpr auto get() const noexcept -> decltype(std::declval<const basic_json_t&>().template get_ptr<PointerType>()) { // delegate the call to get_ptr return get_ptr<PointerType>(); } /*! @brief get a reference value (implicit) Implicit reference access to the internally stored JSON value. No copies are made. @warning Writing data to the referee of the result yields an undefined state. @tparam ReferenceType reference type; must be a reference to @ref array_t, @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or @ref number_float_t. Enforced by static assertion. @return reference to the internally stored JSON value if the requested reference type @a ReferenceType fits to the JSON value; throws type_error.303 otherwise @throw type_error.303 in case passed type @a ReferenceType is incompatible with the stored JSON value; see example below @complexity Constant. @liveexample{The example shows several calls to `get_ref()`.,get_ref} @since version 1.1.0 */ template<typename ReferenceType, typename std::enable_if< std::is_reference<ReferenceType>::value, int>::type = 0> ReferenceType get_ref() { // delegate call to get_ref_impl return get_ref_impl<ReferenceType>(*this); } /*! @brief get a reference value (implicit) @copydoc get_ref() */ template<typename ReferenceType, typename std::enable_if< std::is_reference<ReferenceType>::value and std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0> ReferenceType get_ref() const { // delegate call to get_ref_impl return get_ref_impl<ReferenceType>(*this); } /*! @brief get a value (implicit) Implicit type conversion between the JSON value and a compatible value. The call is realized by calling @ref get() const. @tparam ValueType non-pointer type compatible to the JSON value, for instance `int` for JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for JSON arrays. The character type of @ref string_t as well as an initializer list of this type is excluded to avoid ambiguities as these types implicitly convert to `std::string`. @return copy of the JSON value, converted to type @a ValueType @throw type_error.302 in case passed type @a ValueType is incompatible to the JSON value type (e.g., the JSON value is of type boolean, but a string is requested); see example below @complexity Linear in the size of the JSON value. @liveexample{The example below shows several conversions from JSON values to other types. There a few things to note: (1) Floating-point numbers can be converted to integers\, (2) A JSON array can be converted to a standard `std::vector<short>`\, (3) A JSON object can be converted to C++ associative containers such as `std::unordered_map<std::string\, json>`.,operator__ValueType} @since version 1.0.0 */ template < typename ValueType, typename std::enable_if < not std::is_pointer<ValueType>::value and not std::is_same<ValueType, detail::json_ref<basic_json>>::value and not std::is_same<ValueType, typename string_t::value_type>::value and not detail::is_basic_json<ValueType>::value #ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015 and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value #if defined(JSON_HAS_CPP_17) && (defined(__GNUC__) || (defined(_MSC_VER) and _MSC_VER <= 1914)) and not std::is_same<ValueType, typename std::string_view>::value #endif #endif and detail::is_detected<detail::get_template_function, const basic_json_t&, ValueType>::value , int >::type = 0 > operator ValueType() const { // delegate the call to get<>() const return get<ValueType>(); } /// @} //////////////////// // element access // //////////////////// /// @name element access /// Access to the JSON value. /// @{ /*! @brief access specified array element with bounds checking Returns a reference to the element at specified location @a idx, with bounds checking. @param[in] idx index of the element to access @return reference to the element at index @a idx @throw type_error.304 if the JSON value is not an array; in this case, calling `at` with an index makes no sense. See example below. @throw out_of_range.401 if the index @a idx is out of range of the array; that is, `idx >= size()`. See example below. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Constant. @since version 1.0.0 @liveexample{The example below shows how array elements can be read and written using `at()`. It also demonstrates the different exceptions that can be thrown.,at__size_type} */ reference at(size_type idx) { // at only works for arrays if (JSON_LIKELY(is_array())) { JSON_TRY { return m_value.array->at(idx); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range")); } } else { JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name()))); } } /*! @brief access specified array element with bounds checking Returns a const reference to the element at specified location @a idx, with bounds checking. @param[in] idx index of the element to access @return const reference to the element at index @a idx @throw type_error.304 if the JSON value is not an array; in this case, calling `at` with an index makes no sense. See example below. @throw out_of_range.401 if the index @a idx is out of range of the array; that is, `idx >= size()`. See example below. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Constant. @since version 1.0.0 @liveexample{The example below shows how array elements can be read using `at()`. It also demonstrates the different exceptions that can be thrown., at__size_type_const} */ const_reference at(size_type idx) const { // at only works for arrays if (JSON_LIKELY(is_array())) { JSON_TRY { return m_value.array->at(idx); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range")); } } else { JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name()))); } } /*! @brief access specified object element with bounds checking Returns a reference to the element at with specified key @a key, with bounds checking. @param[in] key key of the element to access @return reference to the element at key @a key @throw type_error.304 if the JSON value is not an object; in this case, calling `at` with a key makes no sense. See example below. @throw out_of_range.403 if the key @a key is is not stored in the object; that is, `find(key) == end()`. See example below. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Logarithmic in the size of the container. @sa @ref operator[](const typename object_t::key_type&) for unchecked access by reference @sa @ref value() for access by value with a default value @since version 1.0.0 @liveexample{The example below shows how object elements can be read and written using `at()`. It also demonstrates the different exceptions that can be thrown.,at__object_t_key_type} */ reference at(const typename object_t::key_type& key) { // at only works for objects if (JSON_LIKELY(is_object())) { JSON_TRY { return m_value.object->at(key); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(out_of_range::create(403, "key '" + key + "' not found")); } } else { JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name()))); } } /*! @brief access specified object element with bounds checking Returns a const reference to the element at with specified key @a key, with bounds checking. @param[in] key key of the element to access @return const reference to the element at key @a key @throw type_error.304 if the JSON value is not an object; in this case, calling `at` with a key makes no sense. See example below. @throw out_of_range.403 if the key @a key is is not stored in the object; that is, `find(key) == end()`. See example below. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Logarithmic in the size of the container. @sa @ref operator[](const typename object_t::key_type&) for unchecked access by reference @sa @ref value() for access by value with a default value @since version 1.0.0 @liveexample{The example below shows how object elements can be read using `at()`. It also demonstrates the different exceptions that can be thrown., at__object_t_key_type_const} */ const_reference at(const typename object_t::key_type& key) const { // at only works for objects if (JSON_LIKELY(is_object())) { JSON_TRY { return m_value.object->at(key); } JSON_CATCH (std::out_of_range&) { // create better exception explanation JSON_THROW(out_of_range::create(403, "key '" + key + "' not found")); } } else { JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name()))); } } /*! @brief access specified array element Returns a reference to the element at specified location @a idx. @note If @a idx is beyond the range of the array (i.e., `idx >= size()`), then the array is silently filled up with `null` values to make `idx` a valid reference to the last stored element. @param[in] idx index of the element to access @return reference to the element at index @a idx @throw type_error.305 if the JSON value is not an array or null; in that cases, using the [] operator with an index makes no sense. @complexity Constant if @a idx is in the range of the array. Otherwise linear in `idx - size()`. @liveexample{The example below shows how array elements can be read and written using `[]` operator. Note the addition of `null` values.,operatorarray__size_type} @since version 1.0.0 */ reference operator[](size_type idx) { // implicitly convert null value to an empty array if (is_null()) { m_type = value_t::array; m_value.array = create<array_t>(); assert_invariant(); } // operator[] only works for arrays if (JSON_LIKELY(is_array())) { // fill up array with null values if given idx is outside range if (idx >= m_value.array->size()) { m_value.array->insert(m_value.array->end(), idx - m_value.array->size() + 1, basic_json()); } return m_value.array->operator[](idx); } JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name()))); } /*! @brief access specified array element Returns a const reference to the element at specified location @a idx. @param[in] idx index of the element to access @return const reference to the element at index @a idx @throw type_error.305 if the JSON value is not an array; in that case, using the [] operator with an index makes no sense. @complexity Constant. @liveexample{The example below shows how array elements can be read using the `[]` operator.,operatorarray__size_type_const} @since version 1.0.0 */ const_reference operator[](size_type idx) const { // const operator[] only works for arrays if (JSON_LIKELY(is_array())) { return m_value.array->operator[](idx); } JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name()))); } /*! @brief access specified object element Returns a reference to the element at with specified key @a key. @note If @a key is not found in the object, then it is silently added to the object and filled with a `null` value to make `key` a valid reference. In case the value was `null` before, it is converted to an object. @param[in] key key of the element to access @return reference to the element at key @a key @throw type_error.305 if the JSON value is not an object or null; in that cases, using the [] operator with a key makes no sense. @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read and written using the `[]` operator.,operatorarray__key_type} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.0.0 */ reference operator[](const typename object_t::key_type& key) { // implicitly convert null value to an empty object if (is_null()) { m_type = value_t::object; m_value.object = create<object_t>(); assert_invariant(); } // operator[] only works for objects if (JSON_LIKELY(is_object())) { return m_value.object->operator[](key); } JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name()))); } /*! @brief read-only access specified object element Returns a const reference to the element at with specified key @a key. No bounds checking is performed. @warning If the element with key @a key does not exist, the behavior is undefined. @param[in] key key of the element to access @return const reference to the element at key @a key @pre The element with key @a key must exist. **This precondition is enforced with an assertion.** @throw type_error.305 if the JSON value is not an object; in that case, using the [] operator with a key makes no sense. @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read using the `[]` operator.,operatorarray__key_type_const} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.0.0 */ const_reference operator[](const typename object_t::key_type& key) const { // const operator[] only works for objects if (JSON_LIKELY(is_object())) { assert(m_value.object->find(key) != m_value.object->end()); return m_value.object->find(key)->second; } JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name()))); } /*! @brief access specified object element Returns a reference to the element at with specified key @a key. @note If @a key is not found in the object, then it is silently added to the object and filled with a `null` value to make `key` a valid reference. In case the value was `null` before, it is converted to an object. @param[in] key key of the element to access @return reference to the element at key @a key @throw type_error.305 if the JSON value is not an object or null; in that cases, using the [] operator with a key makes no sense. @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read and written using the `[]` operator.,operatorarray__key_type} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.1.0 */ template<typename T> reference operator[](T* key) { // implicitly convert null to object if (is_null()) { m_type = value_t::object; m_value = value_t::object; assert_invariant(); } // at only works for objects if (JSON_LIKELY(is_object())) { return m_value.object->operator[](key); } JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name()))); } /*! @brief read-only access specified object element Returns a const reference to the element at with specified key @a key. No bounds checking is performed. @warning If the element with key @a key does not exist, the behavior is undefined. @param[in] key key of the element to access @return const reference to the element at key @a key @pre The element with key @a key must exist. **This precondition is enforced with an assertion.** @throw type_error.305 if the JSON value is not an object; in that case, using the [] operator with a key makes no sense. @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be read using the `[]` operator.,operatorarray__key_type_const} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref value() for access by value with a default value @since version 1.1.0 */ template<typename T> const_reference operator[](T* key) const { // at only works for objects if (JSON_LIKELY(is_object())) { assert(m_value.object->find(key) != m_value.object->end()); return m_value.object->find(key)->second; } JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name()))); } /*! @brief access specified object element with default value Returns either a copy of an object's element at the specified key @a key or a given default value if no element with key @a key exists. The function is basically equivalent to executing @code {.cpp} try { return at(key); } catch(out_of_range) { return default_value; } @endcode @note Unlike @ref at(const typename object_t::key_type&), this function does not throw if the given key @a key was not found. @note Unlike @ref operator[](const typename object_t::key_type& key), this function does not implicitly add an element to the position defined by @a key. This function is furthermore also applicable to const objects. @param[in] key key of the element to access @param[in] default_value the value to return if @a key is not found @tparam ValueType type compatible to JSON values, for instance `int` for JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for JSON arrays. Note the type of the expected value at @a key and the default value @a default_value must be compatible. @return copy of the element at key @a key or @a default_value if @a key is not found @throw type_error.306 if the JSON value is not an object; in that case, using `value()` with a key makes no sense. @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be queried with a default value.,basic_json__value} @sa @ref at(const typename object_t::key_type&) for access by reference with range checking @sa @ref operator[](const typename object_t::key_type&) for unchecked access by reference @since version 1.0.0 */ template<class ValueType, typename std::enable_if< std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0> ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const { // at only works for objects if (JSON_LIKELY(is_object())) { // if key is found, return value and given default value otherwise const auto it = find(key); if (it != end()) { return *it; } return default_value; } JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name()))); } /*! @brief overload for a default value of type const char* @copydoc basic_json::value(const typename object_t::key_type&, const ValueType&) const */ string_t value(const typename object_t::key_type& key, const char* default_value) const { return value(key, string_t(default_value)); } /*! @brief access specified object element via JSON Pointer with default value Returns either a copy of an object's element at the specified key @a key or a given default value if no element with key @a key exists. The function is basically equivalent to executing @code {.cpp} try { return at(ptr); } catch(out_of_range) { return default_value; } @endcode @note Unlike @ref at(const json_pointer&), this function does not throw if the given key @a key was not found. @param[in] ptr a JSON pointer to the element to access @param[in] default_value the value to return if @a ptr found no value @tparam ValueType type compatible to JSON values, for instance `int` for JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for JSON arrays. Note the type of the expected value at @a key and the default value @a default_value must be compatible. @return copy of the element at key @a key or @a default_value if @a key is not found @throw type_error.306 if the JSON value is not an object; in that case, using `value()` with a key makes no sense. @complexity Logarithmic in the size of the container. @liveexample{The example below shows how object elements can be queried with a default value.,basic_json__value_ptr} @sa @ref operator[](const json_pointer&) for unchecked access by reference @since version 2.0.2 */ template<class ValueType, typename std::enable_if< std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0> ValueType value(const json_pointer& ptr, const ValueType& default_value) const { // at only works for objects if (JSON_LIKELY(is_object())) { // if pointer resolves a value, return it or use default value JSON_TRY { return ptr.get_checked(this); } JSON_INTERNAL_CATCH (out_of_range&) { return default_value; } } JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name()))); } /*! @brief overload for a default value of type const char* @copydoc basic_json::value(const json_pointer&, ValueType) const */ string_t value(const json_pointer& ptr, const char* default_value) const { return value(ptr, string_t(default_value)); } /*! @brief access the first element Returns a reference to the first element in the container. For a JSON container `c`, the expression `c.front()` is equivalent to `*c.begin()`. @return In case of a structured type (array or object), a reference to the first element is returned. In case of number, string, or boolean values, a reference to the value is returned. @complexity Constant. @pre The JSON value must not be `null` (would throw `std::out_of_range`) or an empty array or object (undefined behavior, **guarded by assertions**). @post The JSON value remains unchanged. @throw invalid_iterator.214 when called on `null` value @liveexample{The following code shows an example for `front()`.,front} @sa @ref back() -- access the last element @since version 1.0.0 */ reference front() { return *begin(); } /*! @copydoc basic_json::front() */ const_reference front() const { return *cbegin(); } /*! @brief access the last element Returns a reference to the last element in the container. For a JSON container `c`, the expression `c.back()` is equivalent to @code {.cpp} auto tmp = c.end(); --tmp; return *tmp; @endcode @return In case of a structured type (array or object), a reference to the last element is returned. In case of number, string, or boolean values, a reference to the value is returned. @complexity Constant. @pre The JSON value must not be `null` (would throw `std::out_of_range`) or an empty array or object (undefined behavior, **guarded by assertions**). @post The JSON value remains unchanged. @throw invalid_iterator.214 when called on a `null` value. See example below. @liveexample{The following code shows an example for `back()`.,back} @sa @ref front() -- access the first element @since version 1.0.0 */ reference back() { auto tmp = end(); --tmp; return *tmp; } /*! @copydoc basic_json::back() */ const_reference back() const { auto tmp = cend(); --tmp; return *tmp; } /*! @brief remove element given an iterator Removes the element specified by iterator @a pos. The iterator @a pos must be valid and dereferenceable. Thus the `end()` iterator (which is valid, but is not dereferenceable) cannot be used as a value for @a pos. If called on a primitive type other than `null`, the resulting JSON value will be `null`. @param[in] pos iterator to the element to remove @return Iterator following the last removed element. If the iterator @a pos refers to the last element, the `end()` iterator is returned. @tparam IteratorType an @ref iterator or @ref const_iterator @post Invalidates iterators and references at or after the point of the erase, including the `end()` iterator. @throw type_error.307 if called on a `null` value; example: `"cannot use erase() with null"` @throw invalid_iterator.202 if called on an iterator which does not belong to the current JSON value; example: `"iterator does not fit current value"` @throw invalid_iterator.205 if called on a primitive type with invalid iterator (i.e., any iterator which is not `begin()`); example: `"iterator out of range"` @complexity The complexity depends on the type: - objects: amortized constant - arrays: linear in distance between @a pos and the end of the container - strings: linear in the length of the string - other types: constant @liveexample{The example shows the result of `erase()` for different JSON types.,erase__IteratorType} @sa @ref erase(IteratorType, IteratorType) -- removes the elements in the given range @sa @ref erase(const typename object_t::key_type&) -- removes the element from an object at the given key @sa @ref erase(const size_type) -- removes the element from an array at the given index @since version 1.0.0 */ template<class IteratorType, typename std::enable_if< std::is_same<IteratorType, typename basic_json_t::iterator>::value or std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type = 0> IteratorType erase(IteratorType pos) { // make sure iterator fits the current value if (JSON_UNLIKELY(this != pos.m_object)) { JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value")); } IteratorType result = end(); switch (m_type) { case value_t::boolean: case value_t::number_float: case value_t::number_integer: case value_t::number_unsigned: case value_t::string: { if (JSON_UNLIKELY(not pos.m_it.primitive_iterator.is_begin())) { JSON_THROW(invalid_iterator::create(205, "iterator out of range")); } if (is_string()) { AllocatorType<string_t> alloc; std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string); std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1); m_value.string = nullptr; } m_type = value_t::null; assert_invariant(); break; } case value_t::object: { result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator); break; } case value_t::array: { result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator); break; } default: JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name()))); } return result; } /*! @brief remove elements given an iterator range Removes the element specified by the range `[first; last)`. The iterator @a first does not need to be dereferenceable if `first == last`: erasing an empty range is a no-op. If called on a primitive type other than `null`, the resulting JSON value will be `null`. @param[in] first iterator to the beginning of the range to remove @param[in] last iterator past the end of the range to remove @return Iterator following the last removed element. If the iterator @a second refers to the last element, the `end()` iterator is returned. @tparam IteratorType an @ref iterator or @ref const_iterator @post Invalidates iterators and references at or after the point of the erase, including the `end()` iterator. @throw type_error.307 if called on a `null` value; example: `"cannot use erase() with null"` @throw invalid_iterator.203 if called on iterators which does not belong to the current JSON value; example: `"iterators do not fit current value"` @throw invalid_iterator.204 if called on a primitive type with invalid iterators (i.e., if `first != begin()` and `last != end()`); example: `"iterators out of range"` @complexity The complexity depends on the type: - objects: `log(size()) + std::distance(first, last)` - arrays: linear in the distance between @a first and @a last, plus linear in the distance between @a last and end of the container - strings: linear in the length of the string - other types: constant @liveexample{The example shows the result of `erase()` for different JSON types.,erase__IteratorType_IteratorType} @sa @ref erase(IteratorType) -- removes the element at a given position @sa @ref erase(const typename object_t::key_type&) -- removes the element from an object at the given key @sa @ref erase(const size_type) -- removes the element from an array at the given index @since version 1.0.0 */ template<class IteratorType, typename std::enable_if< std::is_same<IteratorType, typename basic_json_t::iterator>::value or std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type = 0> IteratorType erase(IteratorType first, IteratorType last) { // make sure iterator fits the current value if (JSON_UNLIKELY(this != first.m_object or this != last.m_object)) { JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value")); } IteratorType result = end(); switch (m_type) { case value_t::boolean: case value_t::number_float: case value_t::number_integer: case value_t::number_unsigned: case value_t::string: { if (JSON_LIKELY(not first.m_it.primitive_iterator.is_begin() or not last.m_it.primitive_iterator.is_end())) { JSON_THROW(invalid_iterator::create(204, "iterators out of range")); } if (is_string()) { AllocatorType<string_t> alloc; std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string); std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1); m_value.string = nullptr; } m_type = value_t::null; assert_invariant(); break; } case value_t::object: { result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator, last.m_it.object_iterator); break; } case value_t::array: { result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator, last.m_it.array_iterator); break; } default: JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name()))); } return result; } /*! @brief remove element from a JSON object given a key Removes elements from a JSON object with the key value @a key. @param[in] key value of the elements to remove @return Number of elements removed. If @a ObjectType is the default `std::map` type, the return value will always be `0` (@a key was not found) or `1` (@a key was found). @post References and iterators to the erased elements are invalidated. Other references and iterators are not affected. @throw type_error.307 when called on a type other than JSON object; example: `"cannot use erase() with null"` @complexity `log(size()) + count(key)` @liveexample{The example shows the effect of `erase()`.,erase__key_type} @sa @ref erase(IteratorType) -- removes the element at a given position @sa @ref erase(IteratorType, IteratorType) -- removes the elements in the given range @sa @ref erase(const size_type) -- removes the element from an array at the given index @since version 1.0.0 */ size_type erase(const typename object_t::key_type& key) { // this erase only works for objects if (JSON_LIKELY(is_object())) { return m_value.object->erase(key); } JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name()))); } /*! @brief remove element from a JSON array given an index Removes element from a JSON array at the index @a idx. @param[in] idx index of the element to remove @throw type_error.307 when called on a type other than JSON object; example: `"cannot use erase() with null"` @throw out_of_range.401 when `idx >= size()`; example: `"array index 17 is out of range"` @complexity Linear in distance between @a idx and the end of the container. @liveexample{The example shows the effect of `erase()`.,erase__size_type} @sa @ref erase(IteratorType) -- removes the element at a given position @sa @ref erase(IteratorType, IteratorType) -- removes the elements in the given range @sa @ref erase(const typename object_t::key_type&) -- removes the element from an object at the given key @since version 1.0.0 */ void erase(const size_type idx) { // this erase only works for arrays if (JSON_LIKELY(is_array())) { if (JSON_UNLIKELY(idx >= size())) { JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range")); } m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx)); } else { JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name()))); } } /// @} //////////// // lookup // //////////// /// @name lookup /// @{ /*! @brief find an element in a JSON object Finds an element in a JSON object with key equivalent to @a key. If the element is not found or the JSON value is not an object, end() is returned. @note This method always returns @ref end() when executed on a JSON type that is not an object. @param[in] key key value of the element to search for. @return Iterator to an element with key equivalent to @a key. If no such element is found or the JSON value is not an object, past-the-end (see @ref end()) iterator is returned. @complexity Logarithmic in the size of the JSON object. @liveexample{The example shows how `find()` is used.,find__key_type} @sa @ref contains(KeyT&&) const -- checks whether a key exists @since version 1.0.0 */ template<typename KeyT> iterator find(KeyT&& key) { auto result = end(); if (is_object()) { result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key)); } return result; } /*! @brief find an element in a JSON object @copydoc find(KeyT&&) */ template<typename KeyT> const_iterator find(KeyT&& key) const { auto result = cend(); if (is_object()) { result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key)); } return result; } /*! @brief returns the number of occurrences of a key in a JSON object Returns the number of elements with key @a key. If ObjectType is the default `std::map` type, the return value will always be `0` (@a key was not found) or `1` (@a key was found). @note This method always returns `0` when executed on a JSON type that is not an object. @param[in] key key value of the element to count @return Number of elements with key @a key. If the JSON value is not an object, the return value will be `0`. @complexity Logarithmic in the size of the JSON object. @liveexample{The example shows how `count()` is used.,count} @since version 1.0.0 */ template<typename KeyT> size_type count(KeyT&& key) const { // return 0 for all nonobject types return is_object() ? m_value.object->count(std::forward<KeyT>(key)) : 0; } /*! @brief check the existence of an element in a JSON object Check whether an element exists in a JSON object with key equivalent to @a key. If the element is not found or the JSON value is not an object, false is returned. @note This method always returns false when executed on a JSON type that is not an object. @param[in] key key value to check its existence. @return true if an element with specified @a key exists. If no such element with such key is found or the JSON value is not an object, false is returned. @complexity Logarithmic in the size of the JSON object. @liveexample{The following code shows an example for `contains()`.,contains} @sa @ref find(KeyT&&) -- returns an iterator to an object element @since version 3.6.0 */ template<typename KeyT> bool contains(KeyT&& key) const { return is_object() and m_value.object->find(std::forward<KeyT>(key)) != m_value.object->end(); } /// @} /////////////// // iterators // /////////////// /// @name iterators /// @{ /*! @brief returns an iterator to the first element Returns an iterator to the first element. @image html range-begin-end.svg "Illustration from cppreference.com" @return iterator to the first element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. @liveexample{The following code shows an example for `begin()`.,begin} @sa @ref cbegin() -- returns a const iterator to the beginning @sa @ref end() -- returns an iterator to the end @sa @ref cend() -- returns a const iterator to the end @since version 1.0.0 */ iterator begin() noexcept { iterator result(this); result.set_begin(); return result; } /*! @copydoc basic_json::cbegin() */ const_iterator begin() const noexcept { return cbegin(); } /*! @brief returns a const iterator to the first element Returns a const iterator to the first element. @image html range-begin-end.svg "Illustration from cppreference.com" @return const iterator to the first element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).begin()`. @liveexample{The following code shows an example for `cbegin()`.,cbegin} @sa @ref begin() -- returns an iterator to the beginning @sa @ref end() -- returns an iterator to the end @sa @ref cend() -- returns a const iterator to the end @since version 1.0.0 */ const_iterator cbegin() const noexcept { const_iterator result(this); result.set_begin(); return result; } /*! @brief returns an iterator to one past the last element Returns an iterator to one past the last element. @image html range-begin-end.svg "Illustration from cppreference.com" @return iterator one past the last element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. @liveexample{The following code shows an example for `end()`.,end} @sa @ref cend() -- returns a const iterator to the end @sa @ref begin() -- returns an iterator to the beginning @sa @ref cbegin() -- returns a const iterator to the beginning @since version 1.0.0 */ iterator end() noexcept { iterator result(this); result.set_end(); return result; } /*! @copydoc basic_json::cend() */ const_iterator end() const noexcept { return cend(); } /*! @brief returns a const iterator to one past the last element Returns a const iterator to one past the last element. @image html range-begin-end.svg "Illustration from cppreference.com" @return const iterator one past the last element @complexity Constant. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).end()`. @liveexample{The following code shows an example for `cend()`.,cend} @sa @ref end() -- returns an iterator to the end @sa @ref begin() -- returns an iterator to the beginning @sa @ref cbegin() -- returns a const iterator to the beginning @since version 1.0.0 */ const_iterator cend() const noexcept { const_iterator result(this); result.set_end(); return result; } /*! @brief returns an iterator to the reverse-beginning Returns an iterator to the reverse-beginning; that is, the last element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `reverse_iterator(end())`. @liveexample{The following code shows an example for `rbegin()`.,rbegin} @sa @ref crbegin() -- returns a const reverse iterator to the beginning @sa @ref rend() -- returns a reverse iterator to the end @sa @ref crend() -- returns a const reverse iterator to the end @since version 1.0.0 */ reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } /*! @copydoc basic_json::crbegin() */ const_reverse_iterator rbegin() const noexcept { return crbegin(); } /*! @brief returns an iterator to the reverse-end Returns an iterator to the reverse-end; that is, one before the first element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `reverse_iterator(begin())`. @liveexample{The following code shows an example for `rend()`.,rend} @sa @ref crend() -- returns a const reverse iterator to the end @sa @ref rbegin() -- returns a reverse iterator to the beginning @sa @ref crbegin() -- returns a const reverse iterator to the beginning @since version 1.0.0 */ reverse_iterator rend() noexcept { return reverse_iterator(begin()); } /*! @copydoc basic_json::crend() */ const_reverse_iterator rend() const noexcept { return crend(); } /*! @brief returns a const reverse iterator to the last element Returns a const iterator to the reverse-beginning; that is, the last element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`. @liveexample{The following code shows an example for `crbegin()`.,crbegin} @sa @ref rbegin() -- returns a reverse iterator to the beginning @sa @ref rend() -- returns a reverse iterator to the end @sa @ref crend() -- returns a const reverse iterator to the end @since version 1.0.0 */ const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(cend()); } /*! @brief returns a const reverse iterator to one before the first Returns a const reverse iterator to the reverse-end; that is, one before the first element. @image html range-rbegin-rend.svg "Illustration from cppreference.com" @complexity Constant. @requirement This function helps `basic_json` satisfying the [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer) requirements: - The complexity is constant. - Has the semantics of `const_cast<const basic_json&>(*this).rend()`. @liveexample{The following code shows an example for `crend()`.,crend} @sa @ref rend() -- returns a reverse iterator to the end @sa @ref rbegin() -- returns a reverse iterator to the beginning @sa @ref crbegin() -- returns a const reverse iterator to the beginning @since version 1.0.0 */ const_reverse_iterator crend() const noexcept { return const_reverse_iterator(cbegin()); } public: /*! @brief wrapper to access iterator member functions in range-based for This function allows to access @ref iterator::key() and @ref iterator::value() during range-based for loops. In these loops, a reference to the JSON values is returned, so there is no access to the underlying iterator. For loop without iterator_wrapper: @code{cpp} for (auto it = j_object.begin(); it != j_object.end(); ++it) { std::cout << "key: " << it.key() << ", value:" << it.value() << '\n'; } @endcode Range-based for loop without iterator proxy: @code{cpp} for (auto it : j_object) { // "it" is of type json::reference and has no key() member std::cout << "value: " << it << '\n'; } @endcode Range-based for loop with iterator proxy: @code{cpp} for (auto it : json::iterator_wrapper(j_object)) { std::cout << "key: " << it.key() << ", value:" << it.value() << '\n'; } @endcode @note When iterating over an array, `key()` will return the index of the element as string (see example). @param[in] ref reference to a JSON value @return iteration proxy object wrapping @a ref with an interface to use in range-based for loops @liveexample{The following code shows how the wrapper is used,iterator_wrapper} @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Constant. @note The name of this function is not yet final and may change in the future. @deprecated This stream operator is deprecated and will be removed in future 4.0.0 of the library. Please use @ref items() instead; that is, replace `json::iterator_wrapper(j)` with `j.items()`. */ JSON_DEPRECATED static iteration_proxy<iterator> iterator_wrapper(reference ref) noexcept { return ref.items(); } /*! @copydoc iterator_wrapper(reference) */ JSON_DEPRECATED static iteration_proxy<const_iterator> iterator_wrapper(const_reference ref) noexcept { return ref.items(); } /*! @brief helper to access iterator member functions in range-based for This function allows to access @ref iterator::key() and @ref iterator::value() during range-based for loops. In these loops, a reference to the JSON values is returned, so there is no access to the underlying iterator. For loop without `items()` function: @code{cpp} for (auto it = j_object.begin(); it != j_object.end(); ++it) { std::cout << "key: " << it.key() << ", value:" << it.value() << '\n'; } @endcode Range-based for loop without `items()` function: @code{cpp} for (auto it : j_object) { // "it" is of type json::reference and has no key() member std::cout << "value: " << it << '\n'; } @endcode Range-based for loop with `items()` function: @code{cpp} for (auto& el : j_object.items()) { std::cout << "key: " << el.key() << ", value:" << el.value() << '\n'; } @endcode The `items()` function also allows to use [structured bindings](https://en.cppreference.com/w/cpp/language/structured_binding) (C++17): @code{cpp} for (auto& [key, val] : j_object.items()) { std::cout << "key: " << key << ", value:" << val << '\n'; } @endcode @note When iterating over an array, `key()` will return the index of the element as string (see example). For primitive types (e.g., numbers), `key()` returns an empty string. @return iteration proxy object wrapping @a ref with an interface to use in range-based for loops @liveexample{The following code shows how the function is used.,items} @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Constant. @since version 3.1.0, structured bindings support since 3.5.0. */ iteration_proxy<iterator> items() noexcept { return iteration_proxy<iterator>(*this); } /*! @copydoc items() */ iteration_proxy<const_iterator> items() const noexcept { return iteration_proxy<const_iterator>(*this); } /// @} ////////////// // capacity // ////////////// /// @name capacity /// @{ /*! @brief checks whether the container is empty. Checks if a JSON value has no elements (i.e. whether its @ref size is `0`). @return The return value depends on the different types and is defined as follows: Value type | return value ----------- | ------------- null | `true` boolean | `false` string | `false` number | `false` object | result of function `object_t::empty()` array | result of function `array_t::empty()` @liveexample{The following code uses `empty()` to check if a JSON object contains any elements.,empty} @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their `empty()` functions have constant complexity. @iterators No changes. @exceptionsafety No-throw guarantee: this function never throws exceptions. @note This function does not return whether a string stored as JSON value is empty - it returns whether the JSON container itself is empty which is false in the case of a string. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. - Has the semantics of `begin() == end()`. @sa @ref size() -- returns the number of elements @since version 1.0.0 */ bool empty() const noexcept { switch (m_type) { case value_t::null: { // null values are empty return true; } case value_t::array: { // delegate call to array_t::empty() return m_value.array->empty(); } case value_t::object: { // delegate call to object_t::empty() return m_value.object->empty(); } default: { // all other types are nonempty return false; } } } /*! @brief returns the number of elements Returns the number of elements in a JSON value. @return The return value depends on the different types and is defined as follows: Value type | return value ----------- | ------------- null | `0` boolean | `1` string | `1` number | `1` object | result of function object_t::size() array | result of function array_t::size() @liveexample{The following code calls `size()` on the different value types.,size} @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their size() functions have constant complexity. @iterators No changes. @exceptionsafety No-throw guarantee: this function never throws exceptions. @note This function does not return the length of a string stored as JSON value - it returns the number of elements in the JSON value which is 1 in the case of a string. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. - Has the semantics of `std::distance(begin(), end())`. @sa @ref empty() -- checks whether the container is empty @sa @ref max_size() -- returns the maximal number of elements @since version 1.0.0 */ size_type size() const noexcept { switch (m_type) { case value_t::null: { // null values are empty return 0; } case value_t::array: { // delegate call to array_t::size() return m_value.array->size(); } case value_t::object: { // delegate call to object_t::size() return m_value.object->size(); } default: { // all other types have size 1 return 1; } } } /*! @brief returns the maximum possible number of elements Returns the maximum number of elements a JSON value is able to hold due to system or library implementation limitations, i.e. `std::distance(begin(), end())` for the JSON value. @return The return value depends on the different types and is defined as follows: Value type | return value ----------- | ------------- null | `0` (same as `size()`) boolean | `1` (same as `size()`) string | `1` (same as `size()`) number | `1` (same as `size()`) object | result of function `object_t::max_size()` array | result of function `array_t::max_size()` @liveexample{The following code calls `max_size()` on the different value types. Note the output is implementation specific.,max_size} @complexity Constant, as long as @ref array_t and @ref object_t satisfy the Container concept; that is, their `max_size()` functions have constant complexity. @iterators No changes. @exceptionsafety No-throw guarantee: this function never throws exceptions. @requirement This function helps `basic_json` satisfying the [Container](https://en.cppreference.com/w/cpp/named_req/Container) requirements: - The complexity is constant. - Has the semantics of returning `b.size()` where `b` is the largest possible JSON value. @sa @ref size() -- returns the number of elements @since version 1.0.0 */ size_type max_size() const noexcept { switch (m_type) { case value_t::array: { // delegate call to array_t::max_size() return m_value.array->max_size(); } case value_t::object: { // delegate call to object_t::max_size() return m_value.object->max_size(); } default: { // all other types have max_size() == size() return size(); } } } /// @} /////////////// // modifiers // /////////////// /// @name modifiers /// @{ /*! @brief clears the contents Clears the content of a JSON value and resets it to the default value as if @ref basic_json(value_t) would have been called with the current value type from @ref type(): Value type | initial value ----------- | ------------- null | `null` boolean | `false` string | `""` number | `0` object | `{}` array | `[]` @post Has the same effect as calling @code {.cpp} *this = basic_json(type()); @endcode @liveexample{The example below shows the effect of `clear()` to different JSON types.,clear} @complexity Linear in the size of the JSON value. @iterators All iterators, pointers and references related to this container are invalidated. @exceptionsafety No-throw guarantee: this function never throws exceptions. @sa @ref basic_json(value_t) -- constructor that creates an object with the same value than calling `clear()` @since version 1.0.0 */ void clear() noexcept { switch (m_type) { case value_t::number_integer: { m_value.number_integer = 0; break; } case value_t::number_unsigned: { m_value.number_unsigned = 0; break; } case value_t::number_float: { m_value.number_float = 0.0; break; } case value_t::boolean: { m_value.boolean = false; break; } case value_t::string: { m_value.string->clear(); break; } case value_t::array: { m_value.array->clear(); break; } case value_t::object: { m_value.object->clear(); break; } default: break; } } /*! @brief add an object to an array Appends the given element @a val to the end of the JSON value. If the function is called on a JSON null value, an empty array is created before appending @a val. @param[in] val the value to add to the JSON array @throw type_error.308 when called on a type other than JSON array or null; example: `"cannot use push_back() with number"` @complexity Amortized constant. @liveexample{The example shows how `push_back()` and `+=` can be used to add elements to a JSON array. Note how the `null` value was silently converted to a JSON array.,push_back} @since version 1.0.0 */ void push_back(basic_json&& val) { // push_back only works for null objects or arrays if (JSON_UNLIKELY(not(is_null() or is_array()))) { JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name()))); } // transform null object into an array if (is_null()) { m_type = value_t::array; m_value = value_t::array; assert_invariant(); } // add element to array (move semantics) m_value.array->push_back(std::move(val)); // invalidate object: mark it null so we do not call the destructor // cppcheck-suppress accessMoved val.m_type = value_t::null; } /*! @brief add an object to an array @copydoc push_back(basic_json&&) */ reference operator+=(basic_json&& val) { push_back(std::move(val)); return *this; } /*! @brief add an object to an array @copydoc push_back(basic_json&&) */ void push_back(const basic_json& val) { // push_back only works for null objects or arrays if (JSON_UNLIKELY(not(is_null() or is_array()))) { JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name()))); } // transform null object into an array if (is_null()) { m_type = value_t::array; m_value = value_t::array; assert_invariant(); } // add element to array m_value.array->push_back(val); } /*! @brief add an object to an array @copydoc push_back(basic_json&&) */ reference operator+=(const basic_json& val) { push_back(val); return *this; } /*! @brief add an object to an object Inserts the given element @a val to the JSON object. If the function is called on a JSON null value, an empty object is created before inserting @a val. @param[in] val the value to add to the JSON object @throw type_error.308 when called on a type other than JSON object or null; example: `"cannot use push_back() with number"` @complexity Logarithmic in the size of the container, O(log(`size()`)). @liveexample{The example shows how `push_back()` and `+=` can be used to add elements to a JSON object. Note how the `null` value was silently converted to a JSON object.,push_back__object_t__value} @since version 1.0.0 */ void push_back(const typename object_t::value_type& val) { // push_back only works for null objects or objects if (JSON_UNLIKELY(not(is_null() or is_object()))) { JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name()))); } // transform null object into an object if (is_null()) { m_type = value_t::object; m_value = value_t::object; assert_invariant(); } // add element to array m_value.object->insert(val); } /*! @brief add an object to an object @copydoc push_back(const typename object_t::value_type&) */ reference operator+=(const typename object_t::value_type& val) { push_back(val); return *this; } /*! @brief add an object to an object This function allows to use `push_back` with an initializer list. In case 1. the current value is an object, 2. the initializer list @a init contains only two elements, and 3. the first element of @a init is a string, @a init is converted into an object element and added using @ref push_back(const typename object_t::value_type&). Otherwise, @a init is converted to a JSON value and added using @ref push_back(basic_json&&). @param[in] init an initializer list @complexity Linear in the size of the initializer list @a init. @note This function is required to resolve an ambiguous overload error, because pairs like `{"key", "value"}` can be both interpreted as `object_t::value_type` or `std::initializer_list<basic_json>`, see https://github.com/nlohmann/json/issues/235 for more information. @liveexample{The example shows how initializer lists are treated as objects when possible.,push_back__initializer_list} */ void push_back(initializer_list_t init) { if (is_object() and init.size() == 2 and (*init.begin())->is_string()) { basic_json&& key = init.begin()->moved_or_copied(); push_back(typename object_t::value_type( std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied())); } else { push_back(basic_json(init)); } } /*! @brief add an object to an object @copydoc push_back(initializer_list_t) */ reference operator+=(initializer_list_t init) { push_back(init); return *this; } /*! @brief add an object to an array Creates a JSON value from the passed parameters @a args to the end of the JSON value. If the function is called on a JSON null value, an empty array is created before appending the value created from @a args. @param[in] args arguments to forward to a constructor of @ref basic_json @tparam Args compatible types to create a @ref basic_json object @throw type_error.311 when called on a type other than JSON array or null; example: `"cannot use emplace_back() with number"` @complexity Amortized constant. @liveexample{The example shows how `push_back()` can be used to add elements to a JSON array. Note how the `null` value was silently converted to a JSON array.,emplace_back} @since version 2.0.8 */ template<class... Args> void emplace_back(Args&& ... args) { // emplace_back only works for null objects or arrays if (JSON_UNLIKELY(not(is_null() or is_array()))) { JSON_THROW(type_error::create(311, "cannot use emplace_back() with " + std::string(type_name()))); } // transform null object into an array if (is_null()) { m_type = value_t::array; m_value = value_t::array; assert_invariant(); } // add element to array (perfect forwarding) m_value.array->emplace_back(std::forward<Args>(args)...); } /*! @brief add an object to an object if key does not exist Inserts a new element into a JSON object constructed in-place with the given @a args if there is no element with the key in the container. If the function is called on a JSON null value, an empty object is created before appending the value created from @a args. @param[in] args arguments to forward to a constructor of @ref basic_json @tparam Args compatible types to create a @ref basic_json object @return a pair consisting of an iterator to the inserted element, or the already-existing element if no insertion happened, and a bool denoting whether the insertion took place. @throw type_error.311 when called on a type other than JSON object or null; example: `"cannot use emplace() with number"` @complexity Logarithmic in the size of the container, O(log(`size()`)). @liveexample{The example shows how `emplace()` can be used to add elements to a JSON object. Note how the `null` value was silently converted to a JSON object. Further note how no value is added if there was already one value stored with the same key.,emplace} @since version 2.0.8 */ template<class... Args> std::pair<iterator, bool> emplace(Args&& ... args) { // emplace only works for null objects or arrays if (JSON_UNLIKELY(not(is_null() or is_object()))) { JSON_THROW(type_error::create(311, "cannot use emplace() with " + std::string(type_name()))); } // transform null object into an object if (is_null()) { m_type = value_t::object; m_value = value_t::object; assert_invariant(); } // add element to array (perfect forwarding) auto res = m_value.object->emplace(std::forward<Args>(args)...); // create result iterator and set iterator to the result of emplace auto it = begin(); it.m_it.object_iterator = res.first; // return pair of iterator and boolean return {it, res.second}; } /// Helper for insertion of an iterator /// @note: This uses std::distance to support GCC 4.8, /// see https://github.com/nlohmann/json/pull/1257 template<typename... Args> iterator insert_iterator(const_iterator pos, Args&& ... args) { iterator result(this); assert(m_value.array != nullptr); auto insert_pos = std::distance(m_value.array->begin(), pos.m_it.array_iterator); m_value.array->insert(pos.m_it.array_iterator, std::forward<Args>(args)...); result.m_it.array_iterator = m_value.array->begin() + insert_pos; // This could have been written as: // result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val); // but the return value of insert is missing in GCC 4.8, so it is written this way instead. return result; } /*! @brief inserts element Inserts element @a val before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] val element to insert @return iterator pointing to the inserted @a val. @throw type_error.309 if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw invalid_iterator.202 if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @complexity Constant plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert} @since version 1.0.0 */ iterator insert(const_iterator pos, const basic_json& val) { // insert only works for arrays if (JSON_LIKELY(is_array())) { // check if iterator pos fits to this JSON value if (JSON_UNLIKELY(pos.m_object != this)) { JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value")); } // insert to array and return iterator return insert_iterator(pos, val); } JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name()))); } /*! @brief inserts element @copydoc insert(const_iterator, const basic_json&) */ iterator insert(const_iterator pos, basic_json&& val) { return insert(pos, val); } /*! @brief inserts elements Inserts @a cnt copies of @a val before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] cnt number of copies of @a val to insert @param[in] val element to insert @return iterator pointing to the first element inserted, or @a pos if `cnt==0` @throw type_error.309 if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw invalid_iterator.202 if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @complexity Linear in @a cnt plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert__count} @since version 1.0.0 */ iterator insert(const_iterator pos, size_type cnt, const basic_json& val) { // insert only works for arrays if (JSON_LIKELY(is_array())) { // check if iterator pos fits to this JSON value if (JSON_UNLIKELY(pos.m_object != this)) { JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value")); } // insert to array and return iterator return insert_iterator(pos, cnt, val); } JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name()))); } /*! @brief inserts elements Inserts elements from range `[first, last)` before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] first begin of the range of elements to insert @param[in] last end of the range of elements to insert @throw type_error.309 if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw invalid_iterator.202 if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @throw invalid_iterator.210 if @a first and @a last do not belong to the same JSON value; example: `"iterators do not fit"` @throw invalid_iterator.211 if @a first or @a last are iterators into container for which insert is called; example: `"passed iterators may not belong to container"` @return iterator pointing to the first element inserted, or @a pos if `first==last` @complexity Linear in `std::distance(first, last)` plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert__range} @since version 1.0.0 */ iterator insert(const_iterator pos, const_iterator first, const_iterator last) { // insert only works for arrays if (JSON_UNLIKELY(not is_array())) { JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name()))); } // check if iterator pos fits to this JSON value if (JSON_UNLIKELY(pos.m_object != this)) { JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value")); } // check if range iterators belong to the same JSON object if (JSON_UNLIKELY(first.m_object != last.m_object)) { JSON_THROW(invalid_iterator::create(210, "iterators do not fit")); } if (JSON_UNLIKELY(first.m_object == this)) { JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container")); } // insert to array and return iterator return insert_iterator(pos, first.m_it.array_iterator, last.m_it.array_iterator); } /*! @brief inserts elements Inserts elements from initializer list @a ilist before iterator @a pos. @param[in] pos iterator before which the content will be inserted; may be the end() iterator @param[in] ilist initializer list to insert the values from @throw type_error.309 if called on JSON values other than arrays; example: `"cannot use insert() with string"` @throw invalid_iterator.202 if @a pos is not an iterator of *this; example: `"iterator does not fit current value"` @return iterator pointing to the first element inserted, or @a pos if `ilist` is empty @complexity Linear in `ilist.size()` plus linear in the distance between @a pos and end of the container. @liveexample{The example shows how `insert()` is used.,insert__ilist} @since version 1.0.0 */ iterator insert(const_iterator pos, initializer_list_t ilist) { // insert only works for arrays if (JSON_UNLIKELY(not is_array())) { JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name()))); } // check if iterator pos fits to this JSON value if (JSON_UNLIKELY(pos.m_object != this)) { JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value")); } // insert to array and return iterator return insert_iterator(pos, ilist.begin(), ilist.end()); } /*! @brief inserts elements Inserts elements from range `[first, last)`. @param[in] first begin of the range of elements to insert @param[in] last end of the range of elements to insert @throw type_error.309 if called on JSON values other than objects; example: `"cannot use insert() with string"` @throw invalid_iterator.202 if iterator @a first or @a last does does not point to an object; example: `"iterators first and last must point to objects"` @throw invalid_iterator.210 if @a first and @a last do not belong to the same JSON value; example: `"iterators do not fit"` @complexity Logarithmic: `O(N*log(size() + N))`, where `N` is the number of elements to insert. @liveexample{The example shows how `insert()` is used.,insert__range_object} @since version 3.0.0 */ void insert(const_iterator first, const_iterator last) { // insert only works for objects if (JSON_UNLIKELY(not is_object())) { JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name()))); } // check if range iterators belong to the same JSON object if (JSON_UNLIKELY(first.m_object != last.m_object)) { JSON_THROW(invalid_iterator::create(210, "iterators do not fit")); } // passed iterators must belong to objects if (JSON_UNLIKELY(not first.m_object->is_object())) { JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects")); } m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator); } /*! @brief updates a JSON object from another object, overwriting existing keys Inserts all values from JSON object @a j and overwrites existing keys. @param[in] j JSON object to read values from @throw type_error.312 if called on JSON values other than objects; example: `"cannot use update() with string"` @complexity O(N*log(size() + N)), where N is the number of elements to insert. @liveexample{The example shows how `update()` is used.,update} @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update @since version 3.0.0 */ void update(const_reference j) { // implicitly convert null value to an empty object if (is_null()) { m_type = value_t::object; m_value.object = create<object_t>(); assert_invariant(); } if (JSON_UNLIKELY(not is_object())) { JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name()))); } if (JSON_UNLIKELY(not j.is_object())) { JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(j.type_name()))); } for (auto it = j.cbegin(); it != j.cend(); ++it) { m_value.object->operator[](it.key()) = it.value(); } } /*! @brief updates a JSON object from another object, overwriting existing keys Inserts all values from from range `[first, last)` and overwrites existing keys. @param[in] first begin of the range of elements to insert @param[in] last end of the range of elements to insert @throw type_error.312 if called on JSON values other than objects; example: `"cannot use update() with string"` @throw invalid_iterator.202 if iterator @a first or @a last does does not point to an object; example: `"iterators first and last must point to objects"` @throw invalid_iterator.210 if @a first and @a last do not belong to the same JSON value; example: `"iterators do not fit"` @complexity O(N*log(size() + N)), where N is the number of elements to insert. @liveexample{The example shows how `update()` is used__range.,update} @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update @since version 3.0.0 */ void update(const_iterator first, const_iterator last) { // implicitly convert null value to an empty object if (is_null()) { m_type = value_t::object; m_value.object = create<object_t>(); assert_invariant(); } if (JSON_UNLIKELY(not is_object())) { JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name()))); } // check if range iterators belong to the same JSON object if (JSON_UNLIKELY(first.m_object != last.m_object)) { JSON_THROW(invalid_iterator::create(210, "iterators do not fit")); } // passed iterators must belong to objects if (JSON_UNLIKELY(not first.m_object->is_object() or not last.m_object->is_object())) { JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects")); } for (auto it = first; it != last; ++it) { m_value.object->operator[](it.key()) = it.value(); } } /*! @brief exchanges the values Exchanges the contents of the JSON value with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other JSON value to exchange the contents with @complexity Constant. @liveexample{The example below shows how JSON values can be swapped with `swap()`.,swap__reference} @since version 1.0.0 */ void swap(reference other) noexcept ( std::is_nothrow_move_constructible<value_t>::value and std::is_nothrow_move_assignable<value_t>::value and std::is_nothrow_move_constructible<json_value>::value and std::is_nothrow_move_assignable<json_value>::value ) { std::swap(m_type, other.m_type); std::swap(m_value, other.m_value); assert_invariant(); } /*! @brief exchanges the values Exchanges the contents of a JSON array with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other array to exchange the contents with @throw type_error.310 when JSON value is not an array; example: `"cannot use swap() with string"` @complexity Constant. @liveexample{The example below shows how arrays can be swapped with `swap()`.,swap__array_t} @since version 1.0.0 */ void swap(array_t& other) { // swap only works for arrays if (JSON_LIKELY(is_array())) { std::swap(*(m_value.array), other); } else { JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name()))); } } /*! @brief exchanges the values Exchanges the contents of a JSON object with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other object to exchange the contents with @throw type_error.310 when JSON value is not an object; example: `"cannot use swap() with string"` @complexity Constant. @liveexample{The example below shows how objects can be swapped with `swap()`.,swap__object_t} @since version 1.0.0 */ void swap(object_t& other) { // swap only works for objects if (JSON_LIKELY(is_object())) { std::swap(*(m_value.object), other); } else { JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name()))); } } /*! @brief exchanges the values Exchanges the contents of a JSON string with those of @a other. Does not invoke any move, copy, or swap operations on individual elements. All iterators and references remain valid. The past-the-end iterator is invalidated. @param[in,out] other string to exchange the contents with @throw type_error.310 when JSON value is not a string; example: `"cannot use swap() with boolean"` @complexity Constant. @liveexample{The example below shows how strings can be swapped with `swap()`.,swap__string_t} @since version 1.0.0 */ void swap(string_t& other) { // swap only works for strings if (JSON_LIKELY(is_string())) { std::swap(*(m_value.string), other); } else { JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name()))); } } /// @} public: ////////////////////////////////////////// // lexicographical comparison operators // ////////////////////////////////////////// /// @name lexicographical comparison operators /// @{ /*! @brief comparison: equal Compares two JSON values for equality according to the following rules: - Two JSON values are equal if (1) they are from the same type and (2) their stored values are the same according to their respective `operator==`. - Integer and floating-point numbers are automatically converted before comparison. Note than two NaN values are always treated as unequal. - Two JSON null values are equal. @note Floating-point inside JSON values numbers are compared with `json::number_float_t::operator==` which is `double::operator==` by default. To compare floating-point while respecting an epsilon, an alternative [comparison function](https://github.com/mariokonrad/marnav/blob/master/src/marnav/math/floatingpoint.hpp#L34-#L39) could be used, for instance @code {.cpp} template<typename T, typename = typename std::enable_if<std::is_floating_point<T>::value, T>::type> inline bool is_same(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept { return std::abs(a - b) <= epsilon; } @endcode @note NaN values never compare equal to themselves or to other NaN values. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether the values @a lhs and @a rhs are equal @exceptionsafety No-throw guarantee: this function never throws exceptions. @complexity Linear. @liveexample{The example demonstrates comparing several JSON types.,operator__equal} @since version 1.0.0 */ friend bool operator==(const_reference lhs, const_reference rhs) noexcept { const auto lhs_type = lhs.type(); const auto rhs_type = rhs.type(); if (lhs_type == rhs_type) { switch (lhs_type) { case value_t::array: return *lhs.m_value.array == *rhs.m_value.array; case value_t::object: return *lhs.m_value.object == *rhs.m_value.object; case value_t::null: return true; case value_t::string: return *lhs.m_value.string == *rhs.m_value.string; case value_t::boolean: return lhs.m_value.boolean == rhs.m_value.boolean; case value_t::number_integer: return lhs.m_value.number_integer == rhs.m_value.number_integer; case value_t::number_unsigned: return lhs.m_value.number_unsigned == rhs.m_value.number_unsigned; case value_t::number_float: return lhs.m_value.number_float == rhs.m_value.number_float; default: return false; } } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer) { return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer) { return static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer; } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned); } return false; } /*! @brief comparison: equal @copydoc operator==(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept { return lhs == basic_json(rhs); } /*! @brief comparison: equal @copydoc operator==(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept { return basic_json(lhs) == rhs; } /*! @brief comparison: not equal Compares two JSON values for inequality by calculating `not (lhs == rhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether the values @a lhs and @a rhs are not equal @complexity Linear. @exceptionsafety No-throw guarantee: this function never throws exceptions. @liveexample{The example demonstrates comparing several JSON types.,operator__notequal} @since version 1.0.0 */ friend bool operator!=(const_reference lhs, const_reference rhs) noexcept { return not (lhs == rhs); } /*! @brief comparison: not equal @copydoc operator!=(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept { return lhs != basic_json(rhs); } /*! @brief comparison: not equal @copydoc operator!=(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept { return basic_json(lhs) != rhs; } /*! @brief comparison: less than Compares whether one JSON value @a lhs is less than another JSON value @a rhs according to the following rules: - If @a lhs and @a rhs have the same type, the values are compared using the default `<` operator. - Integer and floating-point numbers are automatically converted before comparison - In case @a lhs and @a rhs have different types, the values are ignored and the order of the types is considered, see @ref operator<(const value_t, const value_t). @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is less than @a rhs @complexity Linear. @exceptionsafety No-throw guarantee: this function never throws exceptions. @liveexample{The example demonstrates comparing several JSON types.,operator__less} @since version 1.0.0 */ friend bool operator<(const_reference lhs, const_reference rhs) noexcept { const auto lhs_type = lhs.type(); const auto rhs_type = rhs.type(); if (lhs_type == rhs_type) { switch (lhs_type) { case value_t::array: // note parentheses are necessary, see // https://github.com/nlohmann/json/issues/1530 return (*lhs.m_value.array) < (*rhs.m_value.array); case value_t::object: return *lhs.m_value.object < *rhs.m_value.object; case value_t::null: return false; case value_t::string: return *lhs.m_value.string < *rhs.m_value.string; case value_t::boolean: return lhs.m_value.boolean < rhs.m_value.boolean; case value_t::number_integer: return lhs.m_value.number_integer < rhs.m_value.number_integer; case value_t::number_unsigned: return lhs.m_value.number_unsigned < rhs.m_value.number_unsigned; case value_t::number_float: return lhs.m_value.number_float < rhs.m_value.number_float; default: return false; } } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer) { return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float) { return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float; } else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned); } else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned) { return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned); } else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer) { return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer; } // We only reach this line if we cannot compare values. In that case, // we compare types. Note we have to call the operator explicitly, // because MSVC has problems otherwise. return operator<(lhs_type, rhs_type); } /*! @brief comparison: less than @copydoc operator<(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept { return lhs < basic_json(rhs); } /*! @brief comparison: less than @copydoc operator<(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept { return basic_json(lhs) < rhs; } /*! @brief comparison: less than or equal Compares whether one JSON value @a lhs is less than or equal to another JSON value by calculating `not (rhs < lhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is less than or equal to @a rhs @complexity Linear. @exceptionsafety No-throw guarantee: this function never throws exceptions. @liveexample{The example demonstrates comparing several JSON types.,operator__greater} @since version 1.0.0 */ friend bool operator<=(const_reference lhs, const_reference rhs) noexcept { return not (rhs < lhs); } /*! @brief comparison: less than or equal @copydoc operator<=(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept { return lhs <= basic_json(rhs); } /*! @brief comparison: less than or equal @copydoc operator<=(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept { return basic_json(lhs) <= rhs; } /*! @brief comparison: greater than Compares whether one JSON value @a lhs is greater than another JSON value by calculating `not (lhs <= rhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is greater than to @a rhs @complexity Linear. @exceptionsafety No-throw guarantee: this function never throws exceptions. @liveexample{The example demonstrates comparing several JSON types.,operator__lessequal} @since version 1.0.0 */ friend bool operator>(const_reference lhs, const_reference rhs) noexcept { return not (lhs <= rhs); } /*! @brief comparison: greater than @copydoc operator>(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept { return lhs > basic_json(rhs); } /*! @brief comparison: greater than @copydoc operator>(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept { return basic_json(lhs) > rhs; } /*! @brief comparison: greater than or equal Compares whether one JSON value @a lhs is greater than or equal to another JSON value by calculating `not (lhs < rhs)`. @param[in] lhs first JSON value to consider @param[in] rhs second JSON value to consider @return whether @a lhs is greater than or equal to @a rhs @complexity Linear. @exceptionsafety No-throw guarantee: this function never throws exceptions. @liveexample{The example demonstrates comparing several JSON types.,operator__greaterequal} @since version 1.0.0 */ friend bool operator>=(const_reference lhs, const_reference rhs) noexcept { return not (lhs < rhs); } /*! @brief comparison: greater than or equal @copydoc operator>=(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept { return lhs >= basic_json(rhs); } /*! @brief comparison: greater than or equal @copydoc operator>=(const_reference, const_reference) */ template<typename ScalarType, typename std::enable_if< std::is_scalar<ScalarType>::value, int>::type = 0> friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept { return basic_json(lhs) >= rhs; } /// @} /////////////////// // serialization // /////////////////// /// @name serialization /// @{ /*! @brief serialize to stream Serialize the given JSON value @a j to the output stream @a o. The JSON value will be serialized using the @ref dump member function. - The indentation of the output can be controlled with the member variable `width` of the output stream @a o. For instance, using the manipulator `std::setw(4)` on @a o sets the indentation level to `4` and the serialization result is the same as calling `dump(4)`. - The indentation character can be controlled with the member variable `fill` of the output stream @a o. For instance, the manipulator `std::setfill('\\t')` sets indentation to use a tab character rather than the default space character. @param[in,out] o stream to serialize to @param[in] j JSON value to serialize @return the stream @a o @throw type_error.316 if a string stored inside the JSON value is not UTF-8 encoded @complexity Linear. @liveexample{The example below shows the serialization with different parameters to `width` to adjust the indentation level.,operator_serialize} @since version 1.0.0; indentation character added in version 3.0.0 */ friend std::ostream& operator<<(std::ostream& o, const basic_json& j) { // read width member and use it as indentation parameter if nonzero const bool pretty_print = o.width() > 0; const auto indentation = pretty_print ? o.width() : 0; // reset width to 0 for subsequent calls to this stream o.width(0); // do the actual serialization serializer s(detail::output_adapter<char>(o), o.fill()); s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation)); return o; } /*! @brief serialize to stream @deprecated This stream operator is deprecated and will be removed in future 4.0.0 of the library. Please use @ref operator<<(std::ostream&, const basic_json&) instead; that is, replace calls like `j >> o;` with `o << j;`. @since version 1.0.0; deprecated since version 3.0.0 */ JSON_DEPRECATED friend std::ostream& operator>>(const basic_json& j, std::ostream& o) { return o << j; } /// @} ///////////////////// // deserialization // ///////////////////// /// @name deserialization /// @{ /*! @brief deserialize from a compatible input This function reads from a compatible input. Examples are: - an array of 1-byte values - strings with character/literal type with size of 1 byte - input streams - container with contiguous storage of 1-byte values. Compatible container types include `std::vector`, `std::string`, `std::array`, `std::valarray`, and `std::initializer_list`. Furthermore, C-style arrays can be used with `std::begin()`/`std::end()`. User-defined containers can be used as long as they implement random-access iterators and a contiguous storage. @pre Each element of the container has a size of 1 byte. Violating this precondition yields undefined behavior. **This precondition is enforced with a static assertion.** @pre The container storage is contiguous. Violating this precondition yields undefined behavior. **This precondition is enforced with an assertion.** @warning There is no way to enforce all preconditions at compile-time. If the function is called with a noncompliant container and with assertions switched off, the behavior is undefined and will most likely yield segmentation violation. @param[in] i input to read from @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @param[in] allow_exceptions whether to throw exceptions in case of a parse error (optional, true by default) @return deserialized JSON value; in case of a parse error and @a allow_exceptions set to `false`, the return value will be value_t::discarded. @throw parse_error.101 if a parse error occurs; example: `""unexpected end of input; expected string literal""` @throw parse_error.102 if to_unicode fails or surrogate error @throw parse_error.103 if to_unicode fails @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `parse()` function reading from an array.,parse__array__parser_callback_t} @liveexample{The example below demonstrates the `parse()` function with and without callback function.,parse__string__parser_callback_t} @liveexample{The example below demonstrates the `parse()` function with and without callback function.,parse__istream__parser_callback_t} @liveexample{The example below demonstrates the `parse()` function reading from a contiguous container.,parse__contiguouscontainer__parser_callback_t} @since version 2.0.3 (contiguous containers) */ JSON_NODISCARD static basic_json parse(detail::input_adapter&& i, const parser_callback_t cb = nullptr, const bool allow_exceptions = true) { basic_json result; parser(i, cb, allow_exceptions).parse(true, result); return result; } static bool accept(detail::input_adapter&& i) { return parser(i).accept(true); } /*! @brief generate SAX events The SAX event lister must follow the interface of @ref json_sax. This function reads from a compatible input. Examples are: - an array of 1-byte values - strings with character/literal type with size of 1 byte - input streams - container with contiguous storage of 1-byte values. Compatible container types include `std::vector`, `std::string`, `std::array`, `std::valarray`, and `std::initializer_list`. Furthermore, C-style arrays can be used with `std::begin()`/`std::end()`. User-defined containers can be used as long as they implement random-access iterators and a contiguous storage. @pre Each element of the container has a size of 1 byte. Violating this precondition yields undefined behavior. **This precondition is enforced with a static assertion.** @pre The container storage is contiguous. Violating this precondition yields undefined behavior. **This precondition is enforced with an assertion.** @warning There is no way to enforce all preconditions at compile-time. If the function is called with a noncompliant container and with assertions switched off, the behavior is undefined and will most likely yield segmentation violation. @param[in] i input to read from @param[in,out] sax SAX event listener @param[in] format the format to parse (JSON, CBOR, MessagePack, or UBJSON) @param[in] strict whether the input has to be consumed completely @return return value of the last processed SAX event @throw parse_error.101 if a parse error occurs; example: `""unexpected end of input; expected string literal""` @throw parse_error.102 if to_unicode fails or surrogate error @throw parse_error.103 if to_unicode fails @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the SAX consumer @a sax has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `sax_parse()` function reading from string and processing the events with a user-defined SAX event consumer.,sax_parse} @since version 3.2.0 */ template <typename SAX> static bool sax_parse(detail::input_adapter&& i, SAX* sax, input_format_t format = input_format_t::json, const bool strict = true) { assert(sax); return format == input_format_t::json ? parser(std::move(i)).sax_parse(sax, strict) : detail::binary_reader<basic_json, SAX>(std::move(i)).sax_parse(format, sax, strict); } /*! @brief deserialize from an iterator range with contiguous storage This function reads from an iterator range of a container with contiguous storage of 1-byte values. Compatible container types include `std::vector`, `std::string`, `std::array`, `std::valarray`, and `std::initializer_list`. Furthermore, C-style arrays can be used with `std::begin()`/`std::end()`. User-defined containers can be used as long as they implement random-access iterators and a contiguous storage. @pre The iterator range is contiguous. Violating this precondition yields undefined behavior. **This precondition is enforced with an assertion.** @pre Each element in the range has a size of 1 byte. Violating this precondition yields undefined behavior. **This precondition is enforced with a static assertion.** @warning There is no way to enforce all preconditions at compile-time. If the function is called with noncompliant iterators and with assertions switched off, the behavior is undefined and will most likely yield segmentation violation. @tparam IteratorType iterator of container with contiguous storage @param[in] first begin of the range to parse (included) @param[in] last end of the range to parse (excluded) @param[in] cb a parser callback function of type @ref parser_callback_t which is used to control the deserialization by filtering unwanted values (optional) @param[in] allow_exceptions whether to throw exceptions in case of a parse error (optional, true by default) @return deserialized JSON value; in case of a parse error and @a allow_exceptions set to `false`, the return value will be value_t::discarded. @throw parse_error.101 in case of an unexpected token @throw parse_error.102 if to_unicode fails or surrogate error @throw parse_error.103 if to_unicode fails @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. The complexity can be higher if the parser callback function @a cb has a super-linear complexity. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below demonstrates the `parse()` function reading from an iterator range.,parse__iteratortype__parser_callback_t} @since version 2.0.3 */ template<class IteratorType, typename std::enable_if< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0> static basic_json parse(IteratorType first, IteratorType last, const parser_callback_t cb = nullptr, const bool allow_exceptions = true) { basic_json result; parser(detail::input_adapter(first, last), cb, allow_exceptions).parse(true, result); return result; } template<class IteratorType, typename std::enable_if< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0> static bool accept(IteratorType first, IteratorType last) { return parser(detail::input_adapter(first, last)).accept(true); } template<class IteratorType, class SAX, typename std::enable_if< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0> static bool sax_parse(IteratorType first, IteratorType last, SAX* sax) { return parser(detail::input_adapter(first, last)).sax_parse(sax); } /*! @brief deserialize from stream @deprecated This stream operator is deprecated and will be removed in version 4.0.0 of the library. Please use @ref operator>>(std::istream&, basic_json&) instead; that is, replace calls like `j << i;` with `i >> j;`. @since version 1.0.0; deprecated since version 3.0.0 */ JSON_DEPRECATED friend std::istream& operator<<(basic_json& j, std::istream& i) { return operator>>(i, j); } /*! @brief deserialize from stream Deserializes an input stream to a JSON value. @param[in,out] i input stream to read a serialized JSON value from @param[in,out] j JSON value to write the deserialized input to @throw parse_error.101 in case of an unexpected token @throw parse_error.102 if to_unicode fails or surrogate error @throw parse_error.103 if to_unicode fails @complexity Linear in the length of the input. The parser is a predictive LL(1) parser. @note A UTF-8 byte order mark is silently ignored. @liveexample{The example below shows how a JSON value is constructed by reading a serialization from a stream.,operator_deserialize} @sa parse(std::istream&, const parser_callback_t) for a variant with a parser callback function to filter values while parsing @since version 1.0.0 */ friend std::istream& operator>>(std::istream& i, basic_json& j) { parser(detail::input_adapter(i)).parse(false, j); return i; } /// @} /////////////////////////// // convenience functions // /////////////////////////// /*! @brief return the type as string Returns the type name as string to be used in error messages - usually to indicate that a function was called on a wrong JSON type. @return a string representation of a the @a m_type member: Value type | return value ----------- | ------------- null | `"null"` boolean | `"boolean"` string | `"string"` number | `"number"` (for all number types) object | `"object"` array | `"array"` discarded | `"discarded"` @exceptionsafety No-throw guarantee: this function never throws exceptions. @complexity Constant. @liveexample{The following code exemplifies `type_name()` for all JSON types.,type_name} @sa @ref type() -- return the type of the JSON value @sa @ref operator value_t() -- return the type of the JSON value (implicit) @since version 1.0.0, public since 2.1.0, `const char*` and `noexcept` since 3.0.0 */ const char* type_name() const noexcept { { switch (m_type) { case value_t::null: return "null"; case value_t::object: return "object"; case value_t::array: return "array"; case value_t::string: return "string"; case value_t::boolean: return "boolean"; case value_t::discarded: return "discarded"; default: return "number"; } } } private: ////////////////////// // member variables // ////////////////////// /// the type of the current element value_t m_type = value_t::null; /// the value of the current element json_value m_value = {}; ////////////////////////////////////////// // binary serialization/deserialization // ////////////////////////////////////////// /// @name binary serialization/deserialization support /// @{ public: /*! @brief create a CBOR serialization of a given JSON value Serializes a given JSON value @a j to a byte vector using the CBOR (Concise Binary Object Representation) serialization format. CBOR is a binary serialization format which aims to be more compact than JSON itself, yet more efficient to parse. The library uses the following mapping from JSON values types to CBOR types according to the CBOR specification (RFC 7049): JSON value type | value/range | CBOR type | first byte --------------- | ------------------------------------------ | ---------------------------------- | --------------- null | `null` | Null | 0xF6 boolean | `true` | True | 0xF5 boolean | `false` | False | 0xF4 number_integer | -9223372036854775808..-2147483649 | Negative integer (8 bytes follow) | 0x3B number_integer | -2147483648..-32769 | Negative integer (4 bytes follow) | 0x3A number_integer | -32768..-129 | Negative integer (2 bytes follow) | 0x39 number_integer | -128..-25 | Negative integer (1 byte follow) | 0x38 number_integer | -24..-1 | Negative integer | 0x20..0x37 number_integer | 0..23 | Integer | 0x00..0x17 number_integer | 24..255 | Unsigned integer (1 byte follow) | 0x18 number_integer | 256..65535 | Unsigned integer (2 bytes follow) | 0x19 number_integer | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A number_integer | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B number_unsigned | 0..23 | Integer | 0x00..0x17 number_unsigned | 24..255 | Unsigned integer (1 byte follow) | 0x18 number_unsigned | 256..65535 | Unsigned integer (2 bytes follow) | 0x19 number_unsigned | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A number_unsigned | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B number_float | *any value* | Double-Precision Float | 0xFB string | *length*: 0..23 | UTF-8 string | 0x60..0x77 string | *length*: 23..255 | UTF-8 string (1 byte follow) | 0x78 string | *length*: 256..65535 | UTF-8 string (2 bytes follow) | 0x79 string | *length*: 65536..4294967295 | UTF-8 string (4 bytes follow) | 0x7A string | *length*: 4294967296..18446744073709551615 | UTF-8 string (8 bytes follow) | 0x7B array | *size*: 0..23 | array | 0x80..0x97 array | *size*: 23..255 | array (1 byte follow) | 0x98 array | *size*: 256..65535 | array (2 bytes follow) | 0x99 array | *size*: 65536..4294967295 | array (4 bytes follow) | 0x9A array | *size*: 4294967296..18446744073709551615 | array (8 bytes follow) | 0x9B object | *size*: 0..23 | map | 0xA0..0xB7 object | *size*: 23..255 | map (1 byte follow) | 0xB8 object | *size*: 256..65535 | map (2 bytes follow) | 0xB9 object | *size*: 65536..4294967295 | map (4 bytes follow) | 0xBA object | *size*: 4294967296..18446744073709551615 | map (8 bytes follow) | 0xBB @note The mapping is **complete** in the sense that any JSON value type can be converted to a CBOR value. @note If NaN or Infinity are stored inside a JSON number, they are serialized properly. This behavior differs from the @ref dump() function which serializes NaN or Infinity to `null`. @note The following CBOR types are not used in the conversion: - byte strings (0x40..0x5F) - UTF-8 strings terminated by "break" (0x7F) - arrays terminated by "break" (0x9F) - maps terminated by "break" (0xBF) - date/time (0xC0..0xC1) - bignum (0xC2..0xC3) - decimal fraction (0xC4) - bigfloat (0xC5) - tagged items (0xC6..0xD4, 0xD8..0xDB) - expected conversions (0xD5..0xD7) - simple values (0xE0..0xF3, 0xF8) - undefined (0xF7) - half and single-precision floats (0xF9-0xFA) - break (0xFF) @param[in] j JSON value to serialize @return MessagePack serialization as byte vector @complexity Linear in the size of the JSON value @a j. @liveexample{The example shows the serialization of a JSON value to a byte vector in CBOR format.,to_cbor} @sa http://cbor.io @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the analogous deserialization @sa @ref to_msgpack(const basic_json&) for the related MessagePack format @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the related UBJSON format @since version 2.0.9 */ static std::vector<uint8_t> to_cbor(const basic_json& j) { std::vector<uint8_t> result; to_cbor(j, result); return result; } static void to_cbor(const basic_json& j, detail::output_adapter<uint8_t> o) { binary_writer<uint8_t>(o).write_cbor(j); } static void to_cbor(const basic_json& j, detail::output_adapter<char> o) { binary_writer<char>(o).write_cbor(j); } /*! @brief create a MessagePack serialization of a given JSON value Serializes a given JSON value @a j to a byte vector using the MessagePack serialization format. MessagePack is a binary serialization format which aims to be more compact than JSON itself, yet more efficient to parse. The library uses the following mapping from JSON values types to MessagePack types according to the MessagePack specification: JSON value type | value/range | MessagePack type | first byte --------------- | --------------------------------- | ---------------- | ---------- null | `null` | nil | 0xC0 boolean | `true` | true | 0xC3 boolean | `false` | false | 0xC2 number_integer | -9223372036854775808..-2147483649 | int64 | 0xD3 number_integer | -2147483648..-32769 | int32 | 0xD2 number_integer | -32768..-129 | int16 | 0xD1 number_integer | -128..-33 | int8 | 0xD0 number_integer | -32..-1 | negative fixint | 0xE0..0xFF number_integer | 0..127 | positive fixint | 0x00..0x7F number_integer | 128..255 | uint 8 | 0xCC number_integer | 256..65535 | uint 16 | 0xCD number_integer | 65536..4294967295 | uint 32 | 0xCE number_integer | 4294967296..18446744073709551615 | uint 64 | 0xCF number_unsigned | 0..127 | positive fixint | 0x00..0x7F number_unsigned | 128..255 | uint 8 | 0xCC number_unsigned | 256..65535 | uint 16 | 0xCD number_unsigned | 65536..4294967295 | uint 32 | 0xCE number_unsigned | 4294967296..18446744073709551615 | uint 64 | 0xCF number_float | *any value* | float 64 | 0xCB string | *length*: 0..31 | fixstr | 0xA0..0xBF string | *length*: 32..255 | str 8 | 0xD9 string | *length*: 256..65535 | str 16 | 0xDA string | *length*: 65536..4294967295 | str 32 | 0xDB array | *size*: 0..15 | fixarray | 0x90..0x9F array | *size*: 16..65535 | array 16 | 0xDC array | *size*: 65536..4294967295 | array 32 | 0xDD object | *size*: 0..15 | fix map | 0x80..0x8F object | *size*: 16..65535 | map 16 | 0xDE object | *size*: 65536..4294967295 | map 32 | 0xDF @note The mapping is **complete** in the sense that any JSON value type can be converted to a MessagePack value. @note The following values can **not** be converted to a MessagePack value: - strings with more than 4294967295 bytes - arrays with more than 4294967295 elements - objects with more than 4294967295 elements @note The following MessagePack types are not used in the conversion: - bin 8 - bin 32 (0xC4..0xC6) - ext 8 - ext 32 (0xC7..0xC9) - float 32 (0xCA) - fixext 1 - fixext 16 (0xD4..0xD8) @note Any MessagePack output created @ref to_msgpack can be successfully parsed by @ref from_msgpack. @note If NaN or Infinity are stored inside a JSON number, they are serialized properly. This behavior differs from the @ref dump() function which serializes NaN or Infinity to `null`. @param[in] j JSON value to serialize @return MessagePack serialization as byte vector @complexity Linear in the size of the JSON value @a j. @liveexample{The example shows the serialization of a JSON value to a byte vector in MessagePack format.,to_msgpack} @sa http://msgpack.org @sa @ref from_msgpack for the analogous deserialization @sa @ref to_cbor(const basic_json& for the related CBOR format @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the related UBJSON format @since version 2.0.9 */ static std::vector<uint8_t> to_msgpack(const basic_json& j) { std::vector<uint8_t> result; to_msgpack(j, result); return result; } static void to_msgpack(const basic_json& j, detail::output_adapter<uint8_t> o) { binary_writer<uint8_t>(o).write_msgpack(j); } static void to_msgpack(const basic_json& j, detail::output_adapter<char> o) { binary_writer<char>(o).write_msgpack(j); } /*! @brief create a UBJSON serialization of a given JSON value Serializes a given JSON value @a j to a byte vector using the UBJSON (Universal Binary JSON) serialization format. UBJSON aims to be more compact than JSON itself, yet more efficient to parse. The library uses the following mapping from JSON values types to UBJSON types according to the UBJSON specification: JSON value type | value/range | UBJSON type | marker --------------- | --------------------------------- | ----------- | ------ null | `null` | null | `Z` boolean | `true` | true | `T` boolean | `false` | false | `F` number_integer | -9223372036854775808..-2147483649 | int64 | `L` number_integer | -2147483648..-32769 | int32 | `l` number_integer | -32768..-129 | int16 | `I` number_integer | -128..127 | int8 | `i` number_integer | 128..255 | uint8 | `U` number_integer | 256..32767 | int16 | `I` number_integer | 32768..2147483647 | int32 | `l` number_integer | 2147483648..9223372036854775807 | int64 | `L` number_unsigned | 0..127 | int8 | `i` number_unsigned | 128..255 | uint8 | `U` number_unsigned | 256..32767 | int16 | `I` number_unsigned | 32768..2147483647 | int32 | `l` number_unsigned | 2147483648..9223372036854775807 | int64 | `L` number_float | *any value* | float64 | `D` string | *with shortest length indicator* | string | `S` array | *see notes on optimized format* | array | `[` object | *see notes on optimized format* | map | `{` @note The mapping is **complete** in the sense that any JSON value type can be converted to a UBJSON value. @note The following values can **not** be converted to a UBJSON value: - strings with more than 9223372036854775807 bytes (theoretical) - unsigned integer numbers above 9223372036854775807 @note The following markers are not used in the conversion: - `Z`: no-op values are not created. - `C`: single-byte strings are serialized with `S` markers. @note Any UBJSON output created @ref to_ubjson can be successfully parsed by @ref from_ubjson. @note If NaN or Infinity are stored inside a JSON number, they are serialized properly. This behavior differs from the @ref dump() function which serializes NaN or Infinity to `null`. @note The optimized formats for containers are supported: Parameter @a use_size adds size information to the beginning of a container and removes the closing marker. Parameter @a use_type further checks whether all elements of a container have the same type and adds the type marker to the beginning of the container. The @a use_type parameter must only be used together with @a use_size = true. Note that @a use_size = true alone may result in larger representations - the benefit of this parameter is that the receiving side is immediately informed on the number of elements of the container. @param[in] j JSON value to serialize @param[in] use_size whether to add size annotations to container types @param[in] use_type whether to add type annotations to container types (must be combined with @a use_size = true) @return UBJSON serialization as byte vector @complexity Linear in the size of the JSON value @a j. @liveexample{The example shows the serialization of a JSON value to a byte vector in UBJSON format.,to_ubjson} @sa http://ubjson.org @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the analogous deserialization @sa @ref to_cbor(const basic_json& for the related CBOR format @sa @ref to_msgpack(const basic_json&) for the related MessagePack format @since version 3.1.0 */ static std::vector<uint8_t> to_ubjson(const basic_json& j, const bool use_size = false, const bool use_type = false) { std::vector<uint8_t> result; to_ubjson(j, result, use_size, use_type); return result; } static void to_ubjson(const basic_json& j, detail::output_adapter<uint8_t> o, const bool use_size = false, const bool use_type = false) { binary_writer<uint8_t>(o).write_ubjson(j, use_size, use_type); } static void to_ubjson(const basic_json& j, detail::output_adapter<char> o, const bool use_size = false, const bool use_type = false) { binary_writer<char>(o).write_ubjson(j, use_size, use_type); } /*! @brief Serializes the given JSON object `j` to BSON and returns a vector containing the corresponding BSON-representation. BSON (Binary JSON) is a binary format in which zero or more ordered key/value pairs are stored as a single entity (a so-called document). The library uses the following mapping from JSON values types to BSON types: JSON value type | value/range | BSON type | marker --------------- | --------------------------------- | ----------- | ------ null | `null` | null | 0x0A boolean | `true`, `false` | boolean | 0x08 number_integer | -9223372036854775808..-2147483649 | int64 | 0x12 number_integer | -2147483648..2147483647 | int32 | 0x10 number_integer | 2147483648..9223372036854775807 | int64 | 0x12 number_unsigned | 0..2147483647 | int32 | 0x10 number_unsigned | 2147483648..9223372036854775807 | int64 | 0x12 number_unsigned | 9223372036854775808..18446744073709551615| -- | -- number_float | *any value* | double | 0x01 string | *any value* | string | 0x02 array | *any value* | document | 0x04 object | *any value* | document | 0x03 @warning The mapping is **incomplete**, since only JSON-objects (and things contained therein) can be serialized to BSON. Also, integers larger than 9223372036854775807 cannot be serialized to BSON, and the keys may not contain U+0000, since they are serialized a zero-terminated c-strings. @throw out_of_range.407 if `j.is_number_unsigned() && j.get<std::uint64_t>() > 9223372036854775807` @throw out_of_range.409 if a key in `j` contains a NULL (U+0000) @throw type_error.317 if `!j.is_object()` @pre The input `j` is required to be an object: `j.is_object() == true`. @note Any BSON output created via @ref to_bson can be successfully parsed by @ref from_bson. @param[in] j JSON value to serialize @return BSON serialization as byte vector @complexity Linear in the size of the JSON value @a j. @liveexample{The example shows the serialization of a JSON value to a byte vector in BSON format.,to_bson} @sa http://bsonspec.org/spec.html @sa @ref from_bson(detail::input_adapter&&, const bool strict) for the analogous deserialization @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the related UBJSON format @sa @ref to_cbor(const basic_json&) for the related CBOR format @sa @ref to_msgpack(const basic_json&) for the related MessagePack format */ static std::vector<uint8_t> to_bson(const basic_json& j) { std::vector<uint8_t> result; to_bson(j, result); return result; } /*! @brief Serializes the given JSON object `j` to BSON and forwards the corresponding BSON-representation to the given output_adapter `o`. @param j The JSON object to convert to BSON. @param o The output adapter that receives the binary BSON representation. @pre The input `j` shall be an object: `j.is_object() == true` @sa @ref to_bson(const basic_json&) */ static void to_bson(const basic_json& j, detail::output_adapter<uint8_t> o) { binary_writer<uint8_t>(o).write_bson(j); } /*! @copydoc to_bson(const basic_json&, detail::output_adapter<uint8_t>) */ static void to_bson(const basic_json& j, detail::output_adapter<char> o) { binary_writer<char>(o).write_bson(j); } /*! @brief create a JSON value from an input in CBOR format Deserializes a given input @a i to a JSON value using the CBOR (Concise Binary Object Representation) serialization format. The library maps CBOR types to JSON value types as follows: CBOR type | JSON value type | first byte ---------------------- | --------------- | ---------- Integer | number_unsigned | 0x00..0x17 Unsigned integer | number_unsigned | 0x18 Unsigned integer | number_unsigned | 0x19 Unsigned integer | number_unsigned | 0x1A Unsigned integer | number_unsigned | 0x1B Negative integer | number_integer | 0x20..0x37 Negative integer | number_integer | 0x38 Negative integer | number_integer | 0x39 Negative integer | number_integer | 0x3A Negative integer | number_integer | 0x3B Negative integer | number_integer | 0x40..0x57 UTF-8 string | string | 0x60..0x77 UTF-8 string | string | 0x78 UTF-8 string | string | 0x79 UTF-8 string | string | 0x7A UTF-8 string | string | 0x7B UTF-8 string | string | 0x7F array | array | 0x80..0x97 array | array | 0x98 array | array | 0x99 array | array | 0x9A array | array | 0x9B array | array | 0x9F map | object | 0xA0..0xB7 map | object | 0xB8 map | object | 0xB9 map | object | 0xBA map | object | 0xBB map | object | 0xBF False | `false` | 0xF4 True | `true` | 0xF5 Null | `null` | 0xF6 Half-Precision Float | number_float | 0xF9 Single-Precision Float | number_float | 0xFA Double-Precision Float | number_float | 0xFB @warning The mapping is **incomplete** in the sense that not all CBOR types can be converted to a JSON value. The following CBOR types are not supported and will yield parse errors (parse_error.112): - byte strings (0x40..0x5F) - date/time (0xC0..0xC1) - bignum (0xC2..0xC3) - decimal fraction (0xC4) - bigfloat (0xC5) - tagged items (0xC6..0xD4, 0xD8..0xDB) - expected conversions (0xD5..0xD7) - simple values (0xE0..0xF3, 0xF8) - undefined (0xF7) @warning CBOR allows map keys of any type, whereas JSON only allows strings as keys in object values. Therefore, CBOR maps with keys other than UTF-8 strings are rejected (parse_error.113). @note Any CBOR output created @ref to_cbor can be successfully parsed by @ref from_cbor. @param[in] i an input in CBOR format convertible to an input adapter @param[in] strict whether to expect the input to be consumed until EOF (true by default) @param[in] allow_exceptions whether to throw exceptions in case of a parse error (optional, true by default) @return deserialized JSON value; in case of a parse error and @a allow_exceptions set to `false`, the return value will be value_t::discarded. @throw parse_error.110 if the given input ends prematurely or the end of file was not reached when @a strict was set to true @throw parse_error.112 if unsupported features from CBOR were used in the given input @a v or if the input is not valid CBOR @throw parse_error.113 if a string was expected as map key, but not found @complexity Linear in the size of the input @a i. @liveexample{The example shows the deserialization of a byte vector in CBOR format to a JSON value.,from_cbor} @sa http://cbor.io @sa @ref to_cbor(const basic_json&) for the analogous serialization @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the related MessagePack format @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the related UBJSON format @since version 2.0.9; parameter @a start_index since 2.1.1; changed to consume input adapters, removed start_index parameter, and added @a strict parameter since 3.0.0; added @a allow_exceptions parameter since 3.2.0 */ JSON_NODISCARD static basic_json from_cbor(detail::input_adapter&& i, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::cbor, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @copydoc from_cbor(detail::input_adapter&&, const bool, const bool) */ template<typename A1, typename A2, detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0> JSON_NODISCARD static basic_json from_cbor(A1 && a1, A2 && a2, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::cbor, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @brief create a JSON value from an input in MessagePack format Deserializes a given input @a i to a JSON value using the MessagePack serialization format. The library maps MessagePack types to JSON value types as follows: MessagePack type | JSON value type | first byte ---------------- | --------------- | ---------- positive fixint | number_unsigned | 0x00..0x7F fixmap | object | 0x80..0x8F fixarray | array | 0x90..0x9F fixstr | string | 0xA0..0xBF nil | `null` | 0xC0 false | `false` | 0xC2 true | `true` | 0xC3 float 32 | number_float | 0xCA float 64 | number_float | 0xCB uint 8 | number_unsigned | 0xCC uint 16 | number_unsigned | 0xCD uint 32 | number_unsigned | 0xCE uint 64 | number_unsigned | 0xCF int 8 | number_integer | 0xD0 int 16 | number_integer | 0xD1 int 32 | number_integer | 0xD2 int 64 | number_integer | 0xD3 str 8 | string | 0xD9 str 16 | string | 0xDA str 32 | string | 0xDB array 16 | array | 0xDC array 32 | array | 0xDD map 16 | object | 0xDE map 32 | object | 0xDF negative fixint | number_integer | 0xE0-0xFF @warning The mapping is **incomplete** in the sense that not all MessagePack types can be converted to a JSON value. The following MessagePack types are not supported and will yield parse errors: - bin 8 - bin 32 (0xC4..0xC6) - ext 8 - ext 32 (0xC7..0xC9) - fixext 1 - fixext 16 (0xD4..0xD8) @note Any MessagePack output created @ref to_msgpack can be successfully parsed by @ref from_msgpack. @param[in] i an input in MessagePack format convertible to an input adapter @param[in] strict whether to expect the input to be consumed until EOF (true by default) @param[in] allow_exceptions whether to throw exceptions in case of a parse error (optional, true by default) @return deserialized JSON value; in case of a parse error and @a allow_exceptions set to `false`, the return value will be value_t::discarded. @throw parse_error.110 if the given input ends prematurely or the end of file was not reached when @a strict was set to true @throw parse_error.112 if unsupported features from MessagePack were used in the given input @a i or if the input is not valid MessagePack @throw parse_error.113 if a string was expected as map key, but not found @complexity Linear in the size of the input @a i. @liveexample{The example shows the deserialization of a byte vector in MessagePack format to a JSON value.,from_msgpack} @sa http://msgpack.org @sa @ref to_msgpack(const basic_json&) for the analogous serialization @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the related CBOR format @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the related UBJSON format @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for the related BSON format @since version 2.0.9; parameter @a start_index since 2.1.1; changed to consume input adapters, removed start_index parameter, and added @a strict parameter since 3.0.0; added @a allow_exceptions parameter since 3.2.0 */ JSON_NODISCARD static basic_json from_msgpack(detail::input_adapter&& i, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::msgpack, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @copydoc from_msgpack(detail::input_adapter&&, const bool, const bool) */ template<typename A1, typename A2, detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0> JSON_NODISCARD static basic_json from_msgpack(A1 && a1, A2 && a2, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::msgpack, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @brief create a JSON value from an input in UBJSON format Deserializes a given input @a i to a JSON value using the UBJSON (Universal Binary JSON) serialization format. The library maps UBJSON types to JSON value types as follows: UBJSON type | JSON value type | marker ----------- | --------------------------------------- | ------ no-op | *no value, next value is read* | `N` null | `null` | `Z` false | `false` | `F` true | `true` | `T` float32 | number_float | `d` float64 | number_float | `D` uint8 | number_unsigned | `U` int8 | number_integer | `i` int16 | number_integer | `I` int32 | number_integer | `l` int64 | number_integer | `L` string | string | `S` char | string | `C` array | array (optimized values are supported) | `[` object | object (optimized values are supported) | `{` @note The mapping is **complete** in the sense that any UBJSON value can be converted to a JSON value. @param[in] i an input in UBJSON format convertible to an input adapter @param[in] strict whether to expect the input to be consumed until EOF (true by default) @param[in] allow_exceptions whether to throw exceptions in case of a parse error (optional, true by default) @return deserialized JSON value; in case of a parse error and @a allow_exceptions set to `false`, the return value will be value_t::discarded. @throw parse_error.110 if the given input ends prematurely or the end of file was not reached when @a strict was set to true @throw parse_error.112 if a parse error occurs @throw parse_error.113 if a string could not be parsed successfully @complexity Linear in the size of the input @a i. @liveexample{The example shows the deserialization of a byte vector in UBJSON format to a JSON value.,from_ubjson} @sa http://ubjson.org @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the analogous serialization @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the related CBOR format @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the related MessagePack format @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for the related BSON format @since version 3.1.0; added @a allow_exceptions parameter since 3.2.0 */ JSON_NODISCARD static basic_json from_ubjson(detail::input_adapter&& i, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::ubjson, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @copydoc from_ubjson(detail::input_adapter&&, const bool, const bool) */ template<typename A1, typename A2, detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0> JSON_NODISCARD static basic_json from_ubjson(A1 && a1, A2 && a2, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::ubjson, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @brief Create a JSON value from an input in BSON format Deserializes a given input @a i to a JSON value using the BSON (Binary JSON) serialization format. The library maps BSON record types to JSON value types as follows: BSON type | BSON marker byte | JSON value type --------------- | ---------------- | --------------------------- double | 0x01 | number_float string | 0x02 | string document | 0x03 | object array | 0x04 | array binary | 0x05 | still unsupported undefined | 0x06 | still unsupported ObjectId | 0x07 | still unsupported boolean | 0x08 | boolean UTC Date-Time | 0x09 | still unsupported null | 0x0A | null Regular Expr. | 0x0B | still unsupported DB Pointer | 0x0C | still unsupported JavaScript Code | 0x0D | still unsupported Symbol | 0x0E | still unsupported JavaScript Code | 0x0F | still unsupported int32 | 0x10 | number_integer Timestamp | 0x11 | still unsupported 128-bit decimal float | 0x13 | still unsupported Max Key | 0x7F | still unsupported Min Key | 0xFF | still unsupported @warning The mapping is **incomplete**. The unsupported mappings are indicated in the table above. @param[in] i an input in BSON format convertible to an input adapter @param[in] strict whether to expect the input to be consumed until EOF (true by default) @param[in] allow_exceptions whether to throw exceptions in case of a parse error (optional, true by default) @return deserialized JSON value; in case of a parse error and @a allow_exceptions set to `false`, the return value will be value_t::discarded. @throw parse_error.114 if an unsupported BSON record type is encountered @complexity Linear in the size of the input @a i. @liveexample{The example shows the deserialization of a byte vector in BSON format to a JSON value.,from_bson} @sa http://bsonspec.org/spec.html @sa @ref to_bson(const basic_json&) for the analogous serialization @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the related CBOR format @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the related MessagePack format @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the related UBJSON format */ JSON_NODISCARD static basic_json from_bson(detail::input_adapter&& i, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::bson, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /*! @copydoc from_bson(detail::input_adapter&&, const bool, const bool) */ template<typename A1, typename A2, detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0> JSON_NODISCARD static basic_json from_bson(A1 && a1, A2 && a2, const bool strict = true, const bool allow_exceptions = true) { basic_json result; detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions); const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::bson, &sdp, strict); return res ? result : basic_json(value_t::discarded); } /// @} ////////////////////////// // JSON Pointer support // ////////////////////////// /// @name JSON Pointer functions /// @{ /*! @brief access specified element via JSON Pointer Uses a JSON pointer to retrieve a reference to the respective JSON value. No bound checking is performed. Similar to @ref operator[](const typename object_t::key_type&), `null` values are created in arrays and objects if necessary. In particular: - If the JSON pointer points to an object key that does not exist, it is created an filled with a `null` value before a reference to it is returned. - If the JSON pointer points to an array index that does not exist, it is created an filled with a `null` value before a reference to it is returned. All indices between the current maximum and the given index are also filled with `null`. - The special value `-` is treated as a synonym for the index past the end. @param[in] ptr a JSON pointer @return reference to the element pointed to by @a ptr @complexity Constant. @throw parse_error.106 if an array index begins with '0' @throw parse_error.109 if an array index was not a number @throw out_of_range.404 if the JSON pointer can not be resolved @liveexample{The behavior is shown in the example.,operatorjson_pointer} @since version 2.0.0 */ reference operator[](const json_pointer& ptr) { return ptr.get_unchecked(this); } /*! @brief access specified element via JSON Pointer Uses a JSON pointer to retrieve a reference to the respective JSON value. No bound checking is performed. The function does not change the JSON value; no `null` values are created. In particular, the the special value `-` yields an exception. @param[in] ptr JSON pointer to the desired element @return const reference to the element pointed to by @a ptr @complexity Constant. @throw parse_error.106 if an array index begins with '0' @throw parse_error.109 if an array index was not a number @throw out_of_range.402 if the array index '-' is used @throw out_of_range.404 if the JSON pointer can not be resolved @liveexample{The behavior is shown in the example.,operatorjson_pointer_const} @since version 2.0.0 */ const_reference operator[](const json_pointer& ptr) const { return ptr.get_unchecked(this); } /*! @brief access specified element via JSON Pointer Returns a reference to the element at with specified JSON pointer @a ptr, with bounds checking. @param[in] ptr JSON pointer to the desired element @return reference to the element pointed to by @a ptr @throw parse_error.106 if an array index in the passed JSON pointer @a ptr begins with '0'. See example below. @throw parse_error.109 if an array index in the passed JSON pointer @a ptr is not a number. See example below. @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr is out of range. See example below. @throw out_of_range.402 if the array index '-' is used in the passed JSON pointer @a ptr. As `at` provides checked access (and no elements are implicitly inserted), the index '-' is always invalid. See example below. @throw out_of_range.403 if the JSON pointer describes a key of an object which cannot be found. See example below. @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved. See example below. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Constant. @since version 2.0.0 @liveexample{The behavior is shown in the example.,at_json_pointer} */ reference at(const json_pointer& ptr) { return ptr.get_checked(this); } /*! @brief access specified element via JSON Pointer Returns a const reference to the element at with specified JSON pointer @a ptr, with bounds checking. @param[in] ptr JSON pointer to the desired element @return reference to the element pointed to by @a ptr @throw parse_error.106 if an array index in the passed JSON pointer @a ptr begins with '0'. See example below. @throw parse_error.109 if an array index in the passed JSON pointer @a ptr is not a number. See example below. @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr is out of range. See example below. @throw out_of_range.402 if the array index '-' is used in the passed JSON pointer @a ptr. As `at` provides checked access (and no elements are implicitly inserted), the index '-' is always invalid. See example below. @throw out_of_range.403 if the JSON pointer describes a key of an object which cannot be found. See example below. @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved. See example below. @exceptionsafety Strong guarantee: if an exception is thrown, there are no changes in the JSON value. @complexity Constant. @since version 2.0.0 @liveexample{The behavior is shown in the example.,at_json_pointer_const} */ const_reference at(const json_pointer& ptr) const { return ptr.get_checked(this); } /*! @brief return flattened JSON value The function creates a JSON object whose keys are JSON pointers (see [RFC 6901](https://tools.ietf.org/html/rfc6901)) and whose values are all primitive. The original JSON value can be restored using the @ref unflatten() function. @return an object that maps JSON pointers to primitive values @note Empty objects and arrays are flattened to `null` and will not be reconstructed correctly by the @ref unflatten() function. @complexity Linear in the size the JSON value. @liveexample{The following code shows how a JSON object is flattened to an object whose keys consist of JSON pointers.,flatten} @sa @ref unflatten() for the reverse function @since version 2.0.0 */ basic_json flatten() const { basic_json result(value_t::object); json_pointer::flatten("", *this, result); return result; } /*! @brief unflatten a previously flattened JSON value The function restores the arbitrary nesting of a JSON value that has been flattened before using the @ref flatten() function. The JSON value must meet certain constraints: 1. The value must be an object. 2. The keys must be JSON pointers (see [RFC 6901](https://tools.ietf.org/html/rfc6901)) 3. The mapped values must be primitive JSON types. @return the original JSON from a flattened version @note Empty objects and arrays are flattened by @ref flatten() to `null` values and can not unflattened to their original type. Apart from this example, for a JSON value `j`, the following is always true: `j == j.flatten().unflatten()`. @complexity Linear in the size the JSON value. @throw type_error.314 if value is not an object @throw type_error.315 if object values are not primitive @liveexample{The following code shows how a flattened JSON object is unflattened into the original nested JSON object.,unflatten} @sa @ref flatten() for the reverse function @since version 2.0.0 */ basic_json unflatten() const { return json_pointer::unflatten(*this); } /// @} ////////////////////////// // JSON Patch functions // ////////////////////////// /// @name JSON Patch functions /// @{ /*! @brief applies a JSON patch [JSON Patch](http://jsonpatch.com) defines a JSON document structure for expressing a sequence of operations to apply to a JSON) document. With this function, a JSON Patch is applied to the current JSON value by executing all operations from the patch. @param[in] json_patch JSON patch document @return patched document @note The application of a patch is atomic: Either all operations succeed and the patched document is returned or an exception is thrown. In any case, the original value is not changed: the patch is applied to a copy of the value. @throw parse_error.104 if the JSON patch does not consist of an array of objects @throw parse_error.105 if the JSON patch is malformed (e.g., mandatory attributes are missing); example: `"operation add must have member path"` @throw out_of_range.401 if an array index is out of range. @throw out_of_range.403 if a JSON pointer inside the patch could not be resolved successfully in the current JSON value; example: `"key baz not found"` @throw out_of_range.405 if JSON pointer has no parent ("add", "remove", "move") @throw other_error.501 if "test" operation was unsuccessful @complexity Linear in the size of the JSON value and the length of the JSON patch. As usually only a fraction of the JSON value is affected by the patch, the complexity can usually be neglected. @liveexample{The following code shows how a JSON patch is applied to a value.,patch} @sa @ref diff -- create a JSON patch by comparing two JSON values @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902) @sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901) @since version 2.0.0 */ basic_json patch(const basic_json& json_patch) const { // make a working copy to apply the patch to basic_json result = *this; // the valid JSON Patch operations enum class patch_operations {add, remove, replace, move, copy, test, invalid}; const auto get_op = [](const std::string & op) { if (op == "add") { return patch_operations::add; } if (op == "remove") { return patch_operations::remove; } if (op == "replace") { return patch_operations::replace; } if (op == "move") { return patch_operations::move; } if (op == "copy") { return patch_operations::copy; } if (op == "test") { return patch_operations::test; } return patch_operations::invalid; }; // wrapper for "add" operation; add value at ptr const auto operation_add = [&result](json_pointer & ptr, basic_json val) { // adding to the root of the target document means replacing it if (ptr.empty()) { result = val; return; } // make sure the top element of the pointer exists json_pointer top_pointer = ptr.top(); if (top_pointer != ptr) { result.at(top_pointer); } // get reference to parent of JSON pointer ptr const auto last_path = ptr.back(); ptr.pop_back(); basic_json& parent = result[ptr]; switch (parent.m_type) { case value_t::null: case value_t::object: { // use operator[] to add value parent[last_path] = val; break; } case value_t::array: { if (last_path == "-") { // special case: append to back parent.push_back(val); } else { const auto idx = json_pointer::array_index(last_path); if (JSON_UNLIKELY(static_cast<size_type>(idx) > parent.size())) { // avoid undefined behavior JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range")); } // default case: insert add offset parent.insert(parent.begin() + static_cast<difference_type>(idx), val); } break; } // if there exists a parent it cannot be primitive default: // LCOV_EXCL_LINE assert(false); // LCOV_EXCL_LINE } }; // wrapper for "remove" operation; remove value at ptr const auto operation_remove = [&result](json_pointer & ptr) { // get reference to parent of JSON pointer ptr const auto last_path = ptr.back(); ptr.pop_back(); basic_json& parent = result.at(ptr); // remove child if (parent.is_object()) { // perform range check auto it = parent.find(last_path); if (JSON_LIKELY(it != parent.end())) { parent.erase(it); } else { JSON_THROW(out_of_range::create(403, "key '" + last_path + "' not found")); } } else if (parent.is_array()) { // note erase performs range check parent.erase(static_cast<size_type>(json_pointer::array_index(last_path))); } }; // type check: top level value must be an array if (JSON_UNLIKELY(not json_patch.is_array())) { JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects")); } // iterate and apply the operations for (const auto& val : json_patch) { // wrapper to get a value for an operation const auto get_value = [&val](const std::string & op, const std::string & member, bool string_type) -> basic_json & { // find value auto it = val.m_value.object->find(member); // context-sensitive error message const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'"; // check if desired value is present if (JSON_UNLIKELY(it == val.m_value.object->end())) { JSON_THROW(parse_error::create(105, 0, error_msg + " must have member '" + member + "'")); } // check if result is of type string if (JSON_UNLIKELY(string_type and not it->second.is_string())) { JSON_THROW(parse_error::create(105, 0, error_msg + " must have string member '" + member + "'")); } // no error: return value return it->second; }; // type check: every element of the array must be an object if (JSON_UNLIKELY(not val.is_object())) { JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects")); } // collect mandatory members const std::string op = get_value("op", "op", true); const std::string path = get_value(op, "path", true); json_pointer ptr(path); switch (get_op(op)) { case patch_operations::add: { operation_add(ptr, get_value("add", "value", false)); break; } case patch_operations::remove: { operation_remove(ptr); break; } case patch_operations::replace: { // the "path" location must exist - use at() result.at(ptr) = get_value("replace", "value", false); break; } case patch_operations::move: { const std::string from_path = get_value("move", "from", true); json_pointer from_ptr(from_path); // the "from" location must exist - use at() basic_json v = result.at(from_ptr); // The move operation is functionally identical to a // "remove" operation on the "from" location, followed // immediately by an "add" operation at the target // location with the value that was just removed. operation_remove(from_ptr); operation_add(ptr, v); break; } case patch_operations::copy: { const std::string from_path = get_value("copy", "from", true); const json_pointer from_ptr(from_path); // the "from" location must exist - use at() basic_json v = result.at(from_ptr); // The copy is functionally identical to an "add" // operation at the target location using the value // specified in the "from" member. operation_add(ptr, v); break; } case patch_operations::test: { bool success = false; JSON_TRY { // check if "value" matches the one at "path" // the "path" location must exist - use at() success = (result.at(ptr) == get_value("test", "value", false)); } JSON_INTERNAL_CATCH (out_of_range&) { // ignore out of range errors: success remains false } // throw an exception if test fails if (JSON_UNLIKELY(not success)) { JSON_THROW(other_error::create(501, "unsuccessful: " + val.dump())); } break; } default: { // op must be "add", "remove", "replace", "move", "copy", or // "test" JSON_THROW(parse_error::create(105, 0, "operation value '" + op + "' is invalid")); } } } return result; } /*! @brief creates a diff as a JSON patch Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can be changed into the value @a target by calling @ref patch function. @invariant For two JSON values @a source and @a target, the following code yields always `true`: @code {.cpp} source.patch(diff(source, target)) == target; @endcode @note Currently, only `remove`, `add`, and `replace` operations are generated. @param[in] source JSON value to compare from @param[in] target JSON value to compare against @param[in] path helper value to create JSON pointers @return a JSON patch to convert the @a source to @a target @complexity Linear in the lengths of @a source and @a target. @liveexample{The following code shows how a JSON patch is created as a diff for two JSON values.,diff} @sa @ref patch -- apply a JSON patch @sa @ref merge_patch -- apply a JSON Merge Patch @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902) @since version 2.0.0 */ JSON_NODISCARD static basic_json diff(const basic_json& source, const basic_json& target, const std::string& path = "") { // the patch basic_json result(value_t::array); // if the values are the same, return empty patch if (source == target) { return result; } if (source.type() != target.type()) { // different types: replace value result.push_back( { {"op", "replace"}, {"path", path}, {"value", target} }); return result; } switch (source.type()) { case value_t::array: { // first pass: traverse common elements std::size_t i = 0; while (i < source.size() and i < target.size()) { // recursive call to compare array values at index i auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i)); result.insert(result.end(), temp_diff.begin(), temp_diff.end()); ++i; } // i now reached the end of at least one array // in a second pass, traverse the remaining elements // remove my remaining elements const auto end_index = static_cast<difference_type>(result.size()); while (i < source.size()) { // add operations in reverse order to avoid invalid // indices result.insert(result.begin() + end_index, object( { {"op", "remove"}, {"path", path + "/" + std::to_string(i)} })); ++i; } // add other remaining elements while (i < target.size()) { result.push_back( { {"op", "add"}, {"path", path + "/" + std::to_string(i)}, {"value", target[i]} }); ++i; } break; } case value_t::object: { // first pass: traverse this object's elements for (auto it = source.cbegin(); it != source.cend(); ++it) { // escape the key name to be used in a JSON patch const auto key = json_pointer::escape(it.key()); if (target.find(it.key()) != target.end()) { // recursive call to compare object values at key it auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key); result.insert(result.end(), temp_diff.begin(), temp_diff.end()); } else { // found a key that is not in o -> remove it result.push_back(object( { {"op", "remove"}, {"path", path + "/" + key} })); } } // second pass: traverse other object's elements for (auto it = target.cbegin(); it != target.cend(); ++it) { if (source.find(it.key()) == source.end()) { // found a key that is not in this -> add it const auto key = json_pointer::escape(it.key()); result.push_back( { {"op", "add"}, {"path", path + "/" + key}, {"value", it.value()} }); } } break; } default: { // both primitive type: replace value result.push_back( { {"op", "replace"}, {"path", path}, {"value", target} }); break; } } return result; } /// @} //////////////////////////////// // JSON Merge Patch functions // //////////////////////////////// /// @name JSON Merge Patch functions /// @{ /*! @brief applies a JSON Merge Patch The merge patch format is primarily intended for use with the HTTP PATCH method as a means of describing a set of modifications to a target resource's content. This function applies a merge patch to the current JSON value. The function implements the following algorithm from Section 2 of [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396): ``` define MergePatch(Target, Patch): if Patch is an Object: if Target is not an Object: Target = {} // Ignore the contents and set it to an empty Object for each Name/Value pair in Patch: if Value is null: if Name exists in Target: remove the Name/Value pair from Target else: Target[Name] = MergePatch(Target[Name], Value) return Target else: return Patch ``` Thereby, `Target` is the current object; that is, the patch is applied to the current value. @param[in] apply_patch the patch to apply @complexity Linear in the lengths of @a patch. @liveexample{The following code shows how a JSON Merge Patch is applied to a JSON document.,merge_patch} @sa @ref patch -- apply a JSON patch @sa [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396) @since version 3.0.0 */ void merge_patch(const basic_json& apply_patch) { if (apply_patch.is_object()) { if (not is_object()) { *this = object(); } for (auto it = apply_patch.begin(); it != apply_patch.end(); ++it) { if (it.value().is_null()) { erase(it.key()); } else { operator[](it.key()).merge_patch(it.value()); } } } else { *this = apply_patch; } } /// @} }; } // namespace nlohmann /////////////////////// // nonmember support // /////////////////////// // specialization of std::swap, and std::hash namespace std { /// hash value for JSON objects template<> struct hash<nlohmann::json> { /*! @brief return a hash value for a JSON object @since version 1.0.0 */ std::size_t operator()(const nlohmann::json& j) const { // a naive hashing via the string representation const auto& h = hash<nlohmann::json::string_t>(); return h(j.dump()); } }; /// specialization for std::less<value_t> /// @note: do not remove the space after '<', /// see https://github.com/nlohmann/json/pull/679 template<> struct less< ::nlohmann::detail::value_t> { /*! @brief compare two value_t enum values @since version 3.0.0 */ bool operator()(nlohmann::detail::value_t lhs, nlohmann::detail::value_t rhs) const noexcept { return nlohmann::detail::operator<(lhs, rhs); } }; /*! @brief exchanges the values of two JSON objects @since version 1.0.0 */ template<> inline void swap<nlohmann::json>(nlohmann::json& j1, nlohmann::json& j2) noexcept( is_nothrow_move_constructible<nlohmann::json>::value and is_nothrow_move_assignable<nlohmann::json>::value ) { j1.swap(j2); } } // namespace std /*! @brief user-defined string literal for JSON values This operator implements a user-defined string literal for JSON objects. It can be used by adding `"_json"` to a string literal and returns a JSON object if no parse error occurred. @param[in] s a string representation of a JSON object @param[in] n the length of string @a s @return a JSON object @since version 1.0.0 */ inline nlohmann::json operator "" _json(const char* s, std::size_t n) { return nlohmann::json::parse(s, s + n); } /*! @brief user-defined string literal for JSON pointer This operator implements a user-defined string literal for JSON Pointers. It can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer object if no parse error occurred. @param[in] s a string representation of a JSON Pointer @param[in] n the length of string @a s @return a JSON pointer object @since version 2.0.0 */ inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n) { return nlohmann::json::json_pointer(std::string(s, n)); } // #include <nlohmann/detail/macro_unscope.hpp> // restore GCC/clang diagnostic settings #if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__) #pragma GCC diagnostic pop #endif #if defined(__clang__) #pragma GCC diagnostic pop #endif // clean up #undef JSON_INTERNAL_CATCH #undef JSON_CATCH #undef JSON_THROW #undef JSON_TRY #undef JSON_LIKELY #undef JSON_UNLIKELY #undef JSON_DEPRECATED #undef JSON_NODISCARD #undef JSON_HAS_CPP_14 #undef JSON_HAS_CPP_17 #undef NLOHMANN_BASIC_JSON_TPL_DECLARATION #undef NLOHMANN_BASIC_JSON_TPL #endif // INCLUDE_NLOHMANN_JSON_HPP_