Server IP : 184.154.167.98 / Your IP : 18.226.165.234 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /opt/cpanel/ea-nodejs16/include/node/ |
Upload File : |
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. /** \mainpage V8 API Reference Guide * * V8 is Google's open source JavaScript engine. * * This set of documents provides reference material generated from the * V8 header file, include/v8.h. * * For other documentation see https://v8.dev/. */ #ifndef INCLUDE_V8_H_ #define INCLUDE_V8_H_ #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <atomic> #include <memory> #include <string> #include <type_traits> #include <utility> #include <vector> #include "cppgc/common.h" #include "v8-internal.h" // NOLINT(build/include_directory) #include "v8-version.h" // NOLINT(build/include_directory) #include "v8config.h" // NOLINT(build/include_directory) // We reserve the V8_* prefix for macros defined in V8 public API and // assume there are no name conflicts with the embedder's code. /** * The v8 JavaScript engine. */ namespace v8 { class AccessorSignature; class Array; class ArrayBuffer; class BigInt; class BigIntObject; class Boolean; class BooleanObject; class CFunction; class CallHandlerHelper; class Context; class CppHeap; class CTypeInfo; class Data; class Date; class EscapableHandleScope; class External; class Function; class FunctionTemplate; class HeapProfiler; class ImplementationUtilities; class Int32; class Integer; class Isolate; class Isolate; class MicrotaskQueue; class Name; class Number; class NumberObject; class Object; class ObjectOperationDescriptor; class ObjectTemplate; class Platform; class Primitive; class PrimitiveArray; class Private; class Promise; class PropertyDescriptor; class Proxy; class RawOperationDescriptor; class Script; class SharedArrayBuffer; class Signature; class StackFrame; class StackTrace; class StartupData; class String; class StringObject; class Symbol; class SymbolObject; class TracedReferenceBase; class Uint32; class Utils; class Value; class WasmMemoryObject; class WasmModuleObject; template <class K, class V, class T> class GlobalValueMap; template <class K, class V, class T> class PersistentValueMapBase; template<class T> class NonCopyablePersistentTraits; template <class T, class M = NonCopyablePersistentTraits<T>> class Persistent; template <class T> class BasicTracedReference; template <class T> class Eternal; template <class T> class Global; template <class T> class Local; template <class T> class Maybe; template <class T> class MaybeLocal; template <class T> class TracedGlobal; template <class T> class TracedReference; template<class K, class V, class T> class PersistentValueMap; template<class T, class P> class WeakCallbackObject; template <class T> class PersistentBase; template <class V, class T> class PersistentValueVector; template<typename T> class FunctionCallbackInfo; template<typename T> class PropertyCallbackInfo; template<typename T> class ReturnValue; namespace internal { class BasicTracedReferenceExtractor; class ExternalString; class FunctionCallbackArguments; class GlobalHandles; class Heap; class HeapObject; class Isolate; class LocalEmbedderHeapTracer; class MicrotaskQueue; class PropertyCallbackArguments; class ReadOnlyHeap; class ScopedExternalStringLock; class ThreadLocalTop; struct ScriptStreamingData; enum class ArgumentsType; template <ArgumentsType> class Arguments; template <typename T> class CustomArguments; namespace wasm { class NativeModule; class StreamingDecoder; } // namespace wasm } // namespace internal namespace metrics { class Recorder; } // namespace metrics namespace debug { class ConsoleCallArguments; } // namespace debug // --- Handles --- /** * An object reference managed by the v8 garbage collector. * * All objects returned from v8 have to be tracked by the garbage * collector so that it knows that the objects are still alive. Also, * because the garbage collector may move objects, it is unsafe to * point directly to an object. Instead, all objects are stored in * handles which are known by the garbage collector and updated * whenever an object moves. Handles should always be passed by value * (except in cases like out-parameters) and they should never be * allocated on the heap. * * There are two types of handles: local and persistent handles. * * Local handles are light-weight and transient and typically used in * local operations. They are managed by HandleScopes. That means that a * HandleScope must exist on the stack when they are created and that they are * only valid inside of the HandleScope active during their creation. * For passing a local handle to an outer HandleScope, an EscapableHandleScope * and its Escape() method must be used. * * Persistent handles can be used when storing objects across several * independent operations and have to be explicitly deallocated when they're no * longer used. * * It is safe to extract the object stored in the handle by * dereferencing the handle (for instance, to extract the Object* from * a Local<Object>); the value will still be governed by a handle * behind the scenes and the same rules apply to these values as to * their handles. */ template <class T> class Local { public: V8_INLINE Local() : val_(nullptr) {} template <class S> V8_INLINE Local(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Local<String> to a * Local<Number>. */ static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Returns true if the handle is empty. */ V8_INLINE bool IsEmpty() const { return val_ == nullptr; } /** * Sets the handle to be empty. IsEmpty() will then return true. */ V8_INLINE void Clear() { val_ = nullptr; } V8_INLINE T* operator->() const { return val_; } V8_INLINE T* operator*() const { return val_; } /** * Checks whether two handles are the same. * Returns true if both are empty, or if the objects to which they refer * are identical. * * If both handles refer to JS objects, this is the same as strict equality. * For primitives, such as numbers or strings, a `false` return value does not * indicate that the values aren't equal in the JavaScript sense. * Use `Value::StrictEquals()` to check primitives for equality. */ template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Address* a = reinterpret_cast<internal::Address*>(this->val_); internal::Address* b = reinterpret_cast<internal::Address*>(that.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } template <class S> V8_INLINE bool operator==( const PersistentBase<S>& that) const { internal::Address* a = reinterpret_cast<internal::Address*>(this->val_); internal::Address* b = reinterpret_cast<internal::Address*>(that.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } /** * Checks whether two handles are different. * Returns true if only one of the handles is empty, or if * the objects to which they refer are different. * * If both handles refer to JS objects, this is the same as strict * non-equality. For primitives, such as numbers or strings, a `true` return * value does not indicate that the values aren't equal in the JavaScript * sense. Use `Value::StrictEquals()` to check primitives for equality. */ template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=( const Persistent<S>& that) const { return !operator==(that); } /** * Cast a handle to a subclass, e.g. Local<Value> to Local<Object>. * This is only valid if the handle actually refers to a value of the * target type. */ template <class S> V8_INLINE static Local<T> Cast(Local<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Local<T>(); #endif return Local<T>(T::Cast(*that)); } /** * Calling this is equivalent to Local<S>::Cast(). * In particular, this is only valid if the handle actually refers to a value * of the target type. */ template <class S> V8_INLINE Local<S> As() const { return Local<S>::Cast(*this); } /** * Create a local handle for the content of another handle. * The referee is kept alive by the local handle even when * the original handle is destroyed/disposed. */ V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that); V8_INLINE static Local<T> New(Isolate* isolate, const PersistentBase<T>& that); V8_INLINE static Local<T> New(Isolate* isolate, const BasicTracedReference<T>& that); private: friend class TracedReferenceBase; friend class Utils; template<class F> friend class Eternal; template<class F> friend class PersistentBase; template<class F, class M> friend class Persistent; template<class F> friend class Local; template <class F> friend class MaybeLocal; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; friend class String; friend class Object; friend class Context; friend class Isolate; friend class Private; template<class F> friend class internal::CustomArguments; friend Local<Primitive> Undefined(Isolate* isolate); friend Local<Primitive> Null(Isolate* isolate); friend Local<Boolean> True(Isolate* isolate); friend Local<Boolean> False(Isolate* isolate); friend class HandleScope; friend class EscapableHandleScope; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template<class F1, class F2> friend class PersistentValueVector; template <class F> friend class ReturnValue; template <class F> friend class Traced; template <class F> friend class TracedGlobal; template <class F> friend class BasicTracedReference; template <class F> friend class TracedReference; explicit V8_INLINE Local(T* that) : val_(that) {} V8_INLINE static Local<T> New(Isolate* isolate, T* that); T* val_; }; #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS) // Handle is an alias for Local for historical reasons. template <class T> using Handle = Local<T>; #endif /** * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether * the Local<> is empty before it can be used. * * If an API method returns a MaybeLocal<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, an * empty MaybeLocal is returned. */ template <class T> class MaybeLocal { public: V8_INLINE MaybeLocal() : val_(nullptr) {} template <class S> V8_INLINE MaybeLocal(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { static_assert(std::is_base_of<T, S>::value, "type check"); } V8_INLINE bool IsEmpty() const { return val_ == nullptr; } /** * Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty, * |false| is returned and |out| is left untouched. */ template <class S> V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const { out->val_ = IsEmpty() ? nullptr : this->val_; return !IsEmpty(); } /** * Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty, * V8 will crash the process. */ V8_INLINE Local<T> ToLocalChecked(); /** * Converts this MaybeLocal<> to a Local<>, using a default value if this * MaybeLocal<> is empty. */ template <class S> V8_INLINE Local<S> FromMaybe(Local<S> default_value) const { return IsEmpty() ? default_value : Local<S>(val_); } private: T* val_; }; /** * Eternal handles are set-once handles that live for the lifetime of the * isolate. */ template <class T> class Eternal { public: V8_INLINE Eternal() : val_(nullptr) {} template <class S> V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : val_(nullptr) { Set(isolate, handle); } // Can only be safely called if already set. V8_INLINE Local<T> Get(Isolate* isolate) const; V8_INLINE bool IsEmpty() const { return val_ == nullptr; } template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle); private: T* val_; }; static const int kInternalFieldsInWeakCallback = 2; static const int kEmbedderFieldsInWeakCallback = 2; template <typename T> class WeakCallbackInfo { public: using Callback = void (*)(const WeakCallbackInfo<T>& data); WeakCallbackInfo(Isolate* isolate, T* parameter, void* embedder_fields[kEmbedderFieldsInWeakCallback], Callback* callback) : isolate_(isolate), parameter_(parameter), callback_(callback) { for (int i = 0; i < kEmbedderFieldsInWeakCallback; ++i) { embedder_fields_[i] = embedder_fields[i]; } } V8_INLINE Isolate* GetIsolate() const { return isolate_; } V8_INLINE T* GetParameter() const { return parameter_; } V8_INLINE void* GetInternalField(int index) const; // When first called, the embedder MUST Reset() the Global which triggered the // callback. The Global itself is unusable for anything else. No v8 other api // calls may be called in the first callback. Should additional work be // required, the embedder must set a second pass callback, which will be // called after all the initial callbacks are processed. // Calling SetSecondPassCallback on the second pass will immediately crash. void SetSecondPassCallback(Callback callback) const { *callback_ = callback; } private: Isolate* isolate_; T* parameter_; Callback* callback_; void* embedder_fields_[kEmbedderFieldsInWeakCallback]; }; // kParameter will pass a void* parameter back to the callback, kInternalFields // will pass the first two internal fields back to the callback, kFinalizer // will pass a void* parameter back, but is invoked before the object is // actually collected, so it can be resurrected. In the last case, it is not // possible to request a second pass callback. enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer }; /** * An object reference that is independent of any handle scope. Where * a Local handle only lives as long as the HandleScope in which it was * allocated, a PersistentBase handle remains valid until it is explicitly * disposed using Reset(). * * A persistent handle contains a reference to a storage cell within * the V8 engine which holds an object value and which is updated by * the garbage collector whenever the object is moved. A new storage * cell can be created using the constructor or PersistentBase::Reset and * existing handles can be disposed using PersistentBase::Reset. * */ template <class T> class PersistentBase { public: /** * If non-empty, destroy the underlying storage cell * IsEmpty() will return true after this call. */ V8_INLINE void Reset(); /** * If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const Local<S>& other); /** * If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other); V8_INLINE bool IsEmpty() const { return val_ == nullptr; } V8_INLINE void Empty() { val_ = 0; } V8_INLINE Local<T> Get(Isolate* isolate) const { return Local<T>::New(isolate, *this); } template <class S> V8_INLINE bool operator==(const PersistentBase<S>& that) const { internal::Address* a = reinterpret_cast<internal::Address*>(this->val_); internal::Address* b = reinterpret_cast<internal::Address*>(that.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Address* a = reinterpret_cast<internal::Address*>(this->val_); internal::Address* b = reinterpret_cast<internal::Address*>(that.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } template <class S> V8_INLINE bool operator!=(const PersistentBase<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } /** * Install a finalization callback on this object. * NOTE: There is no guarantee as to *when* or even *if* the callback is * invoked. The invocation is performed solely on a best effort basis. * As always, GC-based finalization should *not* be relied upon for any * critical form of resource management! * * The callback is supposed to reset the handle. No further V8 API may be * called in this callback. In case additional work involving V8 needs to be * done, a second callback can be scheduled using * WeakCallbackInfo<void>::SetSecondPassCallback. */ template <typename P> V8_INLINE void SetWeak(P* parameter, typename WeakCallbackInfo<P>::Callback callback, WeakCallbackType type); /** * Turns this handle into a weak phantom handle without finalization callback. * The handle will be reset automatically when the garbage collector detects * that the object is no longer reachable. * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall * returns how many phantom handles were reset by the garbage collector. */ V8_INLINE void SetWeak(); template<typename P> V8_INLINE P* ClearWeak(); // TODO(dcarney): remove this. V8_INLINE void ClearWeak() { ClearWeak<void>(); } /** * Annotates the strong handle with the given label, which is then used by the * heap snapshot generator as a name of the edge from the root to the handle. * The function does not take ownership of the label and assumes that the * label is valid as long as the handle is valid. */ V8_INLINE void AnnotateStrongRetainer(const char* label); /** Returns true if the handle's reference is weak. */ V8_INLINE bool IsWeak() const; /** * Assigns a wrapper class ID to the handle. */ V8_INLINE void SetWrapperClassId(uint16_t class_id); /** * Returns the class ID previously assigned to this handle or 0 if no class ID * was previously assigned. */ V8_INLINE uint16_t WrapperClassId() const; PersistentBase(const PersistentBase& other) = delete; void operator=(const PersistentBase&) = delete; private: friend class Isolate; friend class Utils; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template <class F> friend class Global; template<class F> friend class PersistentBase; template<class F> friend class ReturnValue; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template<class F1, class F2> friend class PersistentValueVector; friend class Object; explicit V8_INLINE PersistentBase(T* val) : val_(val) {} V8_INLINE static T* New(Isolate* isolate, T* that); T* val_; }; /** * Default traits for Persistent. This class does not allow * use of the copy constructor or assignment operator. * At present kResetInDestructor is not set, but that will change in a future * version. */ template<class T> class NonCopyablePersistentTraits { public: using NonCopyablePersistent = Persistent<T, NonCopyablePersistentTraits<T>>; static const bool kResetInDestructor = false; template<class S, class M> V8_INLINE static void Copy(const Persistent<S, M>& source, NonCopyablePersistent* dest) { static_assert(sizeof(S) < 0, "NonCopyablePersistentTraits::Copy is not instantiable"); } }; /** * Helper class traits to allow copying and assignment of Persistent. * This will clone the contents of storage cell, but not any of the flags, etc. */ template<class T> struct CopyablePersistentTraits { using CopyablePersistent = Persistent<T, CopyablePersistentTraits<T>>; static const bool kResetInDestructor = true; template<class S, class M> static V8_INLINE void Copy(const Persistent<S, M>& source, CopyablePersistent* dest) { // do nothing, just allow copy } }; /** * A PersistentBase which allows copy and assignment. * * Copy, assignment and destructor behavior is controlled by the traits * class M. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T, class M> class Persistent : public PersistentBase<T> { public: /** * A Persistent with no storage cell. */ V8_INLINE Persistent() : PersistentBase<T>(nullptr) {} /** * Construct a Persistent from a Local. * When the Local is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Persistent(Isolate* isolate, Local<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Construct a Persistent from a Persistent. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S, class M2> V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { static_assert(std::is_base_of<T, S>::value, "type check"); } /** * The copy constructors and assignment operator create a Persistent * exactly as the Persistent constructor, but the Copy function from the * traits class is called, allowing the setting of flags based on the * copied Persistent. */ V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(nullptr) { Copy(that); } template <class S, class M2> V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) { Copy(that); } V8_INLINE Persistent& operator=(const Persistent& that) { Copy(that); return *this; } template <class S, class M2> V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { Copy(that); return *this; } /** * The destructor will dispose the Persistent based on the * kResetInDestructor flags in the traits class. Since not calling dispose * can result in a memory leak, it is recommended to always set this flag. */ V8_INLINE ~Persistent() { if (M::kResetInDestructor) this->Reset(); } // TODO(dcarney): this is pretty useless, fix or remove template <class S> V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (!that.IsEmpty()) T::Cast(*that); #endif return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that)); } // TODO(dcarney): this is pretty useless, fix or remove template <class S> V8_INLINE Persistent<S>& As() const { return Persistent<S>::Cast(*this); } private: friend class Isolate; friend class Utils; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template<class F> friend class ReturnValue; explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {} V8_INLINE T* operator*() const { return this->val_; } template<class S, class M2> V8_INLINE void Copy(const Persistent<S, M2>& that); }; /** * A PersistentBase which has move semantics. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T> class Global : public PersistentBase<T> { public: /** * A Global with no storage cell. */ V8_INLINE Global() : PersistentBase<T>(nullptr) {} /** * Construct a Global from a Local. * When the Local is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Global(Isolate* isolate, Local<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Construct a Global from a PersistentBase. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) { static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Move constructor. */ V8_INLINE Global(Global&& other); V8_INLINE ~Global() { this->Reset(); } /** * Move via assignment. */ template <class S> V8_INLINE Global& operator=(Global<S>&& rhs); /** * Pass allows returning uniques from functions, etc. */ Global Pass() { return static_cast<Global&&>(*this); } /* * For compatibility with Chromium's base::Bind (base::Passed). */ using MoveOnlyTypeForCPP03 = void; Global(const Global&) = delete; void operator=(const Global&) = delete; private: template <class F> friend class ReturnValue; V8_INLINE T* operator*() const { return this->val_; } }; // UniquePersistent is an alias for Global for historical reason. template <class T> using UniquePersistent = Global<T>; /** * Deprecated. Use |TracedReference<T>| instead. */ template <typename T> struct TracedGlobalTrait {}; class TracedReferenceBase { public: /** * Returns true if the reference is empty, i.e., has not been assigned * object. */ bool IsEmpty() const { return val_ == nullptr; } /** * If non-empty, destroy the underlying storage cell. |IsEmpty| will return * true after this call. */ V8_INLINE void Reset(); /** * Construct a Local<Value> from this handle. */ V8_INLINE v8::Local<v8::Value> Get(v8::Isolate* isolate) const; /** * Returns true if this TracedReference is empty, i.e., has not been * assigned an object. This version of IsEmpty is thread-safe. */ bool IsEmptyThreadSafe() const { return this->GetSlotThreadSafe() == nullptr; } /** * Assigns a wrapper class ID to the handle. */ V8_INLINE void SetWrapperClassId(uint16_t class_id); /** * Returns the class ID previously assigned to this handle or 0 if no class ID * was previously assigned. */ V8_INLINE uint16_t WrapperClassId() const; protected: /** * Update this reference in a thread-safe way. */ void SetSlotThreadSafe(void* new_val) { reinterpret_cast<std::atomic<void*>*>(&val_)->store( new_val, std::memory_order_relaxed); } /** * Get this reference in a thread-safe way */ const void* GetSlotThreadSafe() const { return reinterpret_cast<std::atomic<const void*> const*>(&val_)->load( std::memory_order_relaxed); } V8_EXPORT void CheckValue() const; // val_ points to a GlobalHandles node. internal::Address* val_ = nullptr; friend class internal::BasicTracedReferenceExtractor; template <typename F> friend class Local; template <typename U> friend bool operator==(const TracedReferenceBase&, const Local<U>&); friend bool operator==(const TracedReferenceBase&, const TracedReferenceBase&); }; /** * A traced handle with copy and move semantics. The handle is to be used * together with |v8::EmbedderHeapTracer| or as part of GarbageCollected objects * (see v8-cppgc.h) and specifies edges from C++ objects to JavaScript. * * The exact semantics are: * - Tracing garbage collections use |v8::EmbedderHeapTracer| or cppgc. * - Non-tracing garbage collections refer to * |v8::EmbedderRootsHandler::IsRoot()| whether the handle should * be treated as root or not. * * Note that the base class cannot be instantiated itself. Choose from * - TracedGlobal * - TracedReference */ template <typename T> class BasicTracedReference : public TracedReferenceBase { public: /** * Construct a Local<T> from this handle. */ Local<T> Get(Isolate* isolate) const { return Local<T>::New(isolate, *this); } template <class S> V8_INLINE BasicTracedReference<S>& As() const { return reinterpret_cast<BasicTracedReference<S>&>( const_cast<BasicTracedReference<T>&>(*this)); } T* operator->() const { #ifdef V8_ENABLE_CHECKS CheckValue(); #endif // V8_ENABLE_CHECKS return reinterpret_cast<T*>(val_); } T* operator*() const { #ifdef V8_ENABLE_CHECKS CheckValue(); #endif // V8_ENABLE_CHECKS return reinterpret_cast<T*>(val_); } private: enum DestructionMode { kWithDestructor, kWithoutDestructor }; /** * An empty BasicTracedReference without storage cell. */ BasicTracedReference() = default; V8_INLINE static internal::Address* New(Isolate* isolate, T* that, void* slot, DestructionMode destruction_mode); friend class EmbedderHeapTracer; template <typename F> friend class Local; friend class Object; template <typename F> friend class TracedGlobal; template <typename F> friend class TracedReference; template <typename F> friend class BasicTracedReference; template <typename F> friend class ReturnValue; }; /** * A traced handle with destructor that clears the handle. For more details see * BasicTracedReference. */ template <typename T> class TracedGlobal : public BasicTracedReference<T> { public: using BasicTracedReference<T>::Reset; /** * Destructor resetting the handle.Is */ ~TracedGlobal() { this->Reset(); } /** * An empty TracedGlobal without storage cell. */ TracedGlobal() : BasicTracedReference<T>() {} /** * Construct a TracedGlobal from a Local. * * When the Local is non-empty, a new storage cell is created * pointing to the same object. */ template <class S> TracedGlobal(Isolate* isolate, Local<S> that) : BasicTracedReference<T>() { this->val_ = this->New(isolate, that.val_, &this->val_, BasicTracedReference<T>::kWithDestructor); static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Move constructor initializing TracedGlobal from an existing one. */ V8_INLINE TracedGlobal(TracedGlobal&& other) { // Forward to operator=. *this = std::move(other); } /** * Move constructor initializing TracedGlobal from an existing one. */ template <typename S> V8_INLINE TracedGlobal(TracedGlobal<S>&& other) { // Forward to operator=. *this = std::move(other); } /** * Copy constructor initializing TracedGlobal from an existing one. */ V8_INLINE TracedGlobal(const TracedGlobal& other) { // Forward to operator=; *this = other; } /** * Copy constructor initializing TracedGlobal from an existing one. */ template <typename S> V8_INLINE TracedGlobal(const TracedGlobal<S>& other) { // Forward to operator=; *this = other; } /** * Move assignment operator initializing TracedGlobal from an existing one. */ V8_INLINE TracedGlobal& operator=(TracedGlobal&& rhs); /** * Move assignment operator initializing TracedGlobal from an existing one. */ template <class S> V8_INLINE TracedGlobal& operator=(TracedGlobal<S>&& rhs); /** * Copy assignment operator initializing TracedGlobal from an existing one. * * Note: Prohibited when |other| has a finalization callback set through * |SetFinalizationCallback|. */ V8_INLINE TracedGlobal& operator=(const TracedGlobal& rhs); /** * Copy assignment operator initializing TracedGlobal from an existing one. * * Note: Prohibited when |other| has a finalization callback set through * |SetFinalizationCallback|. */ template <class S> V8_INLINE TracedGlobal& operator=(const TracedGlobal<S>& rhs); /** * If non-empty, destroy the underlying storage cell and create a new one with * the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const Local<S>& other); template <class S> V8_INLINE TracedGlobal<S>& As() const { return reinterpret_cast<TracedGlobal<S>&>( const_cast<TracedGlobal<T>&>(*this)); } /** * Adds a finalization callback to the handle. The type of this callback is * similar to WeakCallbackType::kInternalFields, i.e., it will pass the * parameter and the first two internal fields of the object. * * The callback is then supposed to reset the handle in the callback. No * further V8 API may be called in this callback. In case additional work * involving V8 needs to be done, a second callback can be scheduled using * WeakCallbackInfo<void>::SetSecondPassCallback. */ V8_INLINE void SetFinalizationCallback( void* parameter, WeakCallbackInfo<void>::Callback callback); }; /** * A traced handle without destructor that clears the handle. The embedder needs * to ensure that the handle is not accessed once the V8 object has been * reclaimed. This can happen when the handle is not passed through the * EmbedderHeapTracer. For more details see BasicTracedReference. * * The reference assumes the embedder has precise knowledge about references at * all times. In case V8 needs to separately handle on-stack references, the * embedder is required to set the stack start through * |EmbedderHeapTracer::SetStackStart|. */ template <typename T> class TracedReference : public BasicTracedReference<T> { public: using BasicTracedReference<T>::Reset; /** * An empty TracedReference without storage cell. */ TracedReference() : BasicTracedReference<T>() {} /** * Construct a TracedReference from a Local. * * When the Local is non-empty, a new storage cell is created * pointing to the same object. */ template <class S> TracedReference(Isolate* isolate, Local<S> that) : BasicTracedReference<T>() { this->val_ = this->New(isolate, that.val_, &this->val_, BasicTracedReference<T>::kWithoutDestructor); static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Move constructor initializing TracedReference from an * existing one. */ V8_INLINE TracedReference(TracedReference&& other) { // Forward to operator=. *this = std::move(other); } /** * Move constructor initializing TracedReference from an * existing one. */ template <typename S> V8_INLINE TracedReference(TracedReference<S>&& other) { // Forward to operator=. *this = std::move(other); } /** * Copy constructor initializing TracedReference from an * existing one. */ V8_INLINE TracedReference(const TracedReference& other) { // Forward to operator=; *this = other; } /** * Copy constructor initializing TracedReference from an * existing one. */ template <typename S> V8_INLINE TracedReference(const TracedReference<S>& other) { // Forward to operator=; *this = other; } /** * Move assignment operator initializing TracedGlobal from an existing one. */ V8_INLINE TracedReference& operator=(TracedReference&& rhs); /** * Move assignment operator initializing TracedGlobal from an existing one. */ template <class S> V8_INLINE TracedReference& operator=(TracedReference<S>&& rhs); /** * Copy assignment operator initializing TracedGlobal from an existing one. */ V8_INLINE TracedReference& operator=(const TracedReference& rhs); /** * Copy assignment operator initializing TracedGlobal from an existing one. */ template <class S> V8_INLINE TracedReference& operator=(const TracedReference<S>& rhs); /** * If non-empty, destroy the underlying storage cell and create a new one with * the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const Local<S>& other); template <class S> V8_INLINE TracedReference<S>& As() const { return reinterpret_cast<TracedReference<S>&>( const_cast<TracedReference<T>&>(*this)); } }; /** * A stack-allocated class that governs a number of local handles. * After a handle scope has been created, all local handles will be * allocated within that handle scope until either the handle scope is * deleted or another handle scope is created. If there is already a * handle scope and a new one is created, all allocations will take * place in the new handle scope until it is deleted. After that, * new handles will again be allocated in the original handle scope. * * After the handle scope of a local handle has been deleted the * garbage collector will no longer track the object stored in the * handle and may deallocate it. The behavior of accessing a handle * for which the handle scope has been deleted is undefined. */ class V8_EXPORT V8_NODISCARD HandleScope { public: explicit HandleScope(Isolate* isolate); ~HandleScope(); /** * Counts the number of allocated handles. */ static int NumberOfHandles(Isolate* isolate); V8_INLINE Isolate* GetIsolate() const { return reinterpret_cast<Isolate*>(isolate_); } HandleScope(const HandleScope&) = delete; void operator=(const HandleScope&) = delete; protected: V8_INLINE HandleScope() = default; void Initialize(Isolate* isolate); static internal::Address* CreateHandle(internal::Isolate* isolate, internal::Address value); private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Isolate* isolate_; internal::Address* prev_next_; internal::Address* prev_limit_; // Local::New uses CreateHandle with an Isolate* parameter. template<class F> friend class Local; // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with // a HeapObject in their shortcuts. friend class Object; friend class Context; }; /** * A HandleScope which first allocates a handle in the current scope * which will be later filled with the escape value. */ class V8_EXPORT V8_NODISCARD EscapableHandleScope : public HandleScope { public: explicit EscapableHandleScope(Isolate* isolate); V8_INLINE ~EscapableHandleScope() = default; /** * Pushes the value into the previous scope and returns a handle to it. * Cannot be called twice. */ template <class T> V8_INLINE Local<T> Escape(Local<T> value) { internal::Address* slot = Escape(reinterpret_cast<internal::Address*>(*value)); return Local<T>(reinterpret_cast<T*>(slot)); } template <class T> V8_INLINE MaybeLocal<T> EscapeMaybe(MaybeLocal<T> value) { return Escape(value.FromMaybe(Local<T>())); } EscapableHandleScope(const EscapableHandleScope&) = delete; void operator=(const EscapableHandleScope&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Address* Escape(internal::Address* escape_value); internal::Address* escape_slot_; }; /** * A SealHandleScope acts like a handle scope in which no handle allocations * are allowed. It can be useful for debugging handle leaks. * Handles can be allocated within inner normal HandleScopes. */ class V8_EXPORT V8_NODISCARD SealHandleScope { public: explicit SealHandleScope(Isolate* isolate); ~SealHandleScope(); SealHandleScope(const SealHandleScope&) = delete; void operator=(const SealHandleScope&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Isolate* const isolate_; internal::Address* prev_limit_; int prev_sealed_level_; }; // --- Special objects --- /** * The superclass of objects that can reside on V8's heap. */ class V8_EXPORT Data { public: /** * Returns true if this data is a |v8::Value|. */ bool IsValue() const; /** * Returns true if this data is a |v8::Module|. */ bool IsModule() const; /** * Returns true if this data is a |v8::Private|. */ bool IsPrivate() const; /** * Returns true if this data is a |v8::ObjectTemplate|. */ bool IsObjectTemplate() const; /** * Returns true if this data is a |v8::FunctionTemplate|. */ bool IsFunctionTemplate() const; /** * Returns true if this data is a |v8::Context|. */ bool IsContext() const; private: Data(); }; /** * A container type that holds relevant metadata for module loading. * * This is passed back to the embedder as part of * HostImportModuleDynamicallyCallback for module loading. */ class V8_EXPORT ScriptOrModule { public: /** * The name that was passed by the embedder as ResourceName to the * ScriptOrigin. This can be either a v8::String or v8::Undefined. */ Local<Value> GetResourceName(); /** * The options that were passed by the embedder as HostDefinedOptions to * the ScriptOrigin. */ Local<PrimitiveArray> GetHostDefinedOptions(); }; /** * An array to hold Primitive values. This is used by the embedder to * pass host defined options to the ScriptOptions during compilation. * * This is passed back to the embedder as part of * HostImportModuleDynamicallyCallback for module loading. * */ class V8_EXPORT PrimitiveArray { public: static Local<PrimitiveArray> New(Isolate* isolate, int length); int Length() const; void Set(Isolate* isolate, int index, Local<Primitive> item); Local<Primitive> Get(Isolate* isolate, int index); }; /** * The optional attributes of ScriptOrigin. */ class ScriptOriginOptions { public: V8_INLINE ScriptOriginOptions(bool is_shared_cross_origin = false, bool is_opaque = false, bool is_wasm = false, bool is_module = false) : flags_((is_shared_cross_origin ? kIsSharedCrossOrigin : 0) | (is_wasm ? kIsWasm : 0) | (is_opaque ? kIsOpaque : 0) | (is_module ? kIsModule : 0)) {} V8_INLINE ScriptOriginOptions(int flags) : flags_(flags & (kIsSharedCrossOrigin | kIsOpaque | kIsWasm | kIsModule)) {} bool IsSharedCrossOrigin() const { return (flags_ & kIsSharedCrossOrigin) != 0; } bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; } bool IsWasm() const { return (flags_ & kIsWasm) != 0; } bool IsModule() const { return (flags_ & kIsModule) != 0; } int Flags() const { return flags_; } private: enum { kIsSharedCrossOrigin = 1, kIsOpaque = 1 << 1, kIsWasm = 1 << 2, kIsModule = 1 << 3 }; const int flags_; }; /** * The origin, within a file, of a script. */ class ScriptOrigin { public: #if defined(_MSC_VER) && _MSC_VER >= 1910 /* Disable on VS2015 */ V8_DEPRECATED("Use constructor with primitive C++ types") #endif V8_INLINE explicit ScriptOrigin( Local<Value> resource_name, Local<Integer> resource_line_offset, Local<Integer> resource_column_offset, Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(), Local<Integer> script_id = Local<Integer>(), Local<Value> source_map_url = Local<Value>(), Local<Boolean> resource_is_opaque = Local<Boolean>(), Local<Boolean> is_wasm = Local<Boolean>(), Local<Boolean> is_module = Local<Boolean>(), Local<PrimitiveArray> host_defined_options = Local<PrimitiveArray>()); #if defined(_MSC_VER) && _MSC_VER >= 1910 /* Disable on VS2015 */ V8_DEPRECATED("Use constructor that takes an isolate") #endif V8_INLINE explicit ScriptOrigin( Local<Value> resource_name, int resource_line_offset = 0, int resource_column_offset = 0, bool resource_is_shared_cross_origin = false, int script_id = -1, Local<Value> source_map_url = Local<Value>(), bool resource_is_opaque = false, bool is_wasm = false, bool is_module = false, Local<PrimitiveArray> host_defined_options = Local<PrimitiveArray>()); V8_INLINE explicit ScriptOrigin( Isolate* isolate, Local<Value> resource_name, int resource_line_offset = 0, int resource_column_offset = 0, bool resource_is_shared_cross_origin = false, int script_id = -1, Local<Value> source_map_url = Local<Value>(), bool resource_is_opaque = false, bool is_wasm = false, bool is_module = false, Local<PrimitiveArray> host_defined_options = Local<PrimitiveArray>()); V8_INLINE Local<Value> ResourceName() const; V8_DEPRECATED("Use getter with primitvie C++ types.") V8_INLINE Local<Integer> ResourceLineOffset() const; V8_DEPRECATED("Use getter with primitvie C++ types.") V8_INLINE Local<Integer> ResourceColumnOffset() const; V8_DEPRECATED("Use getter with primitvie C++ types.") V8_INLINE Local<Integer> ScriptID() const; V8_INLINE int LineOffset() const; V8_INLINE int ColumnOffset() const; V8_INLINE int ScriptId() const; V8_INLINE Local<Value> SourceMapUrl() const; V8_INLINE Local<PrimitiveArray> HostDefinedOptions() const; V8_INLINE ScriptOriginOptions Options() const { return options_; } private: Isolate* isolate_; Local<Value> resource_name_; int resource_line_offset_; int resource_column_offset_; ScriptOriginOptions options_; int script_id_; Local<Value> source_map_url_; Local<PrimitiveArray> host_defined_options_; }; /** * A compiled JavaScript script, not yet tied to a Context. */ class V8_EXPORT UnboundScript { public: /** * Binds the script to the currently entered context. */ Local<Script> BindToCurrentContext(); int GetId(); Local<Value> GetScriptName(); /** * Data read from magic sourceURL comments. */ Local<Value> GetSourceURL(); /** * Data read from magic sourceMappingURL comments. */ Local<Value> GetSourceMappingURL(); /** * Returns zero based line number of the code_pos location in the script. * -1 will be returned if no information available. */ int GetLineNumber(int code_pos); static const int kNoScriptId = 0; }; /** * A compiled JavaScript module, not yet tied to a Context. */ class V8_EXPORT UnboundModuleScript : public Data { // Only used as a container for code caching. }; /** * A location in JavaScript source. */ class V8_EXPORT Location { public: int GetLineNumber() { return line_number_; } int GetColumnNumber() { return column_number_; } Location(int line_number, int column_number) : line_number_(line_number), column_number_(column_number) {} private: int line_number_; int column_number_; }; /** * A fixed-sized array with elements of type Data. */ class V8_EXPORT FixedArray : public Data { public: int Length() const; Local<Data> Get(Local<Context> context, int i) const; }; class V8_EXPORT ModuleRequest : public Data { public: /** * Returns the module specifier for this ModuleRequest. */ Local<String> GetSpecifier() const; /** * Returns the source code offset of this module request. * Use Module::SourceOffsetToLocation to convert this to line/column numbers. */ int GetSourceOffset() const; /** * Contains the import assertions for this request in the form: * [key1, value1, source_offset1, key2, value2, source_offset2, ...]. * The keys and values are of type v8::String, and the source offsets are of * type Int32. Use Module::SourceOffsetToLocation to convert the source * offsets to Locations with line/column numbers. * * All assertions present in the module request will be supplied in this * list, regardless of whether they are supported by the host. Per * https://tc39.es/proposal-import-assertions/#sec-hostgetsupportedimportassertions, * hosts are expected to ignore assertions that they do not support (as * opposed to, for example, triggering an error if an unsupported assertion is * present). */ Local<FixedArray> GetImportAssertions() const; V8_INLINE static ModuleRequest* Cast(Data* data); private: static void CheckCast(Data* obj); }; /** * A compiled JavaScript module. */ class V8_EXPORT Module : public Data { public: /** * The different states a module can be in. * * This corresponds to the states used in ECMAScript except that "evaluated" * is split into kEvaluated and kErrored, indicating success and failure, * respectively. */ enum Status { kUninstantiated, kInstantiating, kInstantiated, kEvaluating, kEvaluated, kErrored }; /** * Returns the module's current status. */ Status GetStatus() const; /** * For a module in kErrored status, this returns the corresponding exception. */ Local<Value> GetException() const; /** * Returns the number of modules requested by this module. */ V8_DEPRECATED("Use Module::GetModuleRequests() and FixedArray::Length().") int GetModuleRequestsLength() const; /** * Returns the ith module specifier in this module. * i must be < GetModuleRequestsLength() and >= 0. */ V8_DEPRECATED( "Use Module::GetModuleRequests() and ModuleRequest::GetSpecifier().") Local<String> GetModuleRequest(int i) const; /** * Returns the source location (line number and column number) of the ith * module specifier's first occurrence in this module. */ V8_DEPRECATED( "Use Module::GetModuleRequests(), ModuleRequest::GetSourceOffset(), and " "Module::SourceOffsetToLocation().") Location GetModuleRequestLocation(int i) const; /** * Returns the ModuleRequests for this module. */ Local<FixedArray> GetModuleRequests() const; /** * For the given source text offset in this module, returns the corresponding * Location with line and column numbers. */ Location SourceOffsetToLocation(int offset) const; /** * Returns the identity hash for this object. */ int GetIdentityHash() const; using ResolveCallback = MaybeLocal<Module> (*)(Local<Context> context, Local<String> specifier, Local<Module> referrer); using ResolveModuleCallback = MaybeLocal<Module> (*)( Local<Context> context, Local<String> specifier, Local<FixedArray> import_assertions, Local<Module> referrer); /** * Instantiates the module and its dependencies. * * Returns an empty Maybe<bool> if an exception occurred during * instantiation. (In the case where the callback throws an exception, that * exception is propagated.) */ V8_DEPRECATED( "Use the version of InstantiateModule that takes a ResolveModuleCallback " "parameter") V8_WARN_UNUSED_RESULT Maybe<bool> InstantiateModule(Local<Context> context, ResolveCallback callback); V8_WARN_UNUSED_RESULT Maybe<bool> InstantiateModule( Local<Context> context, ResolveModuleCallback callback); /** * Evaluates the module and its dependencies. * * If status is kInstantiated, run the module's code and return a Promise * object. On success, set status to kEvaluated and resolve the Promise with * the completion value; on failure, set status to kErrored and reject the * Promise with the error. * * If IsGraphAsync() is false, the returned Promise is settled. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context); /** * Returns the namespace object of this module. * * The module's status must be at least kInstantiated. */ Local<Value> GetModuleNamespace(); /** * Returns the corresponding context-unbound module script. * * The module must be unevaluated, i.e. its status must not be kEvaluating, * kEvaluated or kErrored. */ Local<UnboundModuleScript> GetUnboundModuleScript(); /** * Returns the underlying script's id. * * The module must be a SourceTextModule and must not have a kErrored status. */ int ScriptId(); /** * Returns whether this module or any of its requested modules is async, * i.e. contains top-level await. * * The module's status must be at least kInstantiated. */ bool IsGraphAsync() const; /** * Returns whether the module is a SourceTextModule. */ bool IsSourceTextModule() const; /** * Returns whether the module is a SyntheticModule. */ bool IsSyntheticModule() const; /* * Callback defined in the embedder. This is responsible for setting * the module's exported values with calls to SetSyntheticModuleExport(). * The callback must return a resolved Promise to indicate success (where no * exception was thrown) and return an empy MaybeLocal to indicate falure * (where an exception was thrown). */ using SyntheticModuleEvaluationSteps = MaybeLocal<Value> (*)(Local<Context> context, Local<Module> module); /** * Creates a new SyntheticModule with the specified export names, where * evaluation_steps will be executed upon module evaluation. * export_names must not contain duplicates. * module_name is used solely for logging/debugging and doesn't affect module * behavior. */ static Local<Module> CreateSyntheticModule( Isolate* isolate, Local<String> module_name, const std::vector<Local<String>>& export_names, SyntheticModuleEvaluationSteps evaluation_steps); /** * Set this module's exported value for the name export_name to the specified * export_value. This method must be called only on Modules created via * CreateSyntheticModule. An error will be thrown if export_name is not one * of the export_names that were passed in that CreateSyntheticModule call. * Returns Just(true) on success, Nothing<bool>() if an error was thrown. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetSyntheticModuleExport( Isolate* isolate, Local<String> export_name, Local<Value> export_value); V8_DEPRECATED( "Use the preceding SetSyntheticModuleExport with an Isolate parameter, " "instead of the one that follows. The former will throw a runtime " "error if called for an export that doesn't exist (as per spec); " "the latter will crash with a failed CHECK().") void SetSyntheticModuleExport(Local<String> export_name, Local<Value> export_value); V8_INLINE static Module* Cast(Data* data); private: static void CheckCast(Data* obj); }; /** * A compiled JavaScript script, tied to a Context which was active when the * script was compiled. */ class V8_EXPORT Script { public: /** * A shorthand for ScriptCompiler::Compile(). */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, Local<String> source, ScriptOrigin* origin = nullptr); /** * Runs the script returning the resulting value. It will be run in the * context in which it was created (ScriptCompiler::CompileBound or * UnboundScript::BindToCurrentContext()). */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context); /** * Returns the corresponding context-unbound script. */ Local<UnboundScript> GetUnboundScript(); }; enum class ScriptType { kClassic, kModule }; /** * For compiling scripts. */ class V8_EXPORT ScriptCompiler { public: /** * Compilation data that the embedder can cache and pass back to speed up * future compilations. The data is produced if the CompilerOptions passed to * the compilation functions in ScriptCompiler contains produce_data_to_cache * = true. The data to cache can then can be retrieved from * UnboundScript. */ struct V8_EXPORT CachedData { enum BufferPolicy { BufferNotOwned, BufferOwned }; CachedData() : data(nullptr), length(0), rejected(false), buffer_policy(BufferNotOwned) {} // If buffer_policy is BufferNotOwned, the caller keeps the ownership of // data and guarantees that it stays alive until the CachedData object is // destroyed. If the policy is BufferOwned, the given data will be deleted // (with delete[]) when the CachedData object is destroyed. CachedData(const uint8_t* data, int length, BufferPolicy buffer_policy = BufferNotOwned); ~CachedData(); // TODO(marja): Async compilation; add constructors which take a callback // which will be called when V8 no longer needs the data. const uint8_t* data; int length; bool rejected; BufferPolicy buffer_policy; // Prevent copying. CachedData(const CachedData&) = delete; CachedData& operator=(const CachedData&) = delete; }; /** * Source code which can be then compiled to a UnboundScript or Script. */ class Source { public: // Source takes ownership of CachedData. V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin, CachedData* cached_data = nullptr); V8_INLINE explicit Source(Local<String> source_string, CachedData* cached_data = nullptr); V8_INLINE ~Source(); // Ownership of the CachedData or its buffers is *not* transferred to the // caller. The CachedData object is alive as long as the Source object is // alive. V8_INLINE const CachedData* GetCachedData() const; V8_INLINE const ScriptOriginOptions& GetResourceOptions() const; // Prevent copying. Source(const Source&) = delete; Source& operator=(const Source&) = delete; private: friend class ScriptCompiler; Local<String> source_string; // Origin information Local<Value> resource_name; int resource_line_offset; int resource_column_offset; ScriptOriginOptions resource_options; Local<Value> source_map_url; Local<PrimitiveArray> host_defined_options; // Cached data from previous compilation (if a kConsume*Cache flag is // set), or hold newly generated cache data (kProduce*Cache flags) are // set when calling a compile method. CachedData* cached_data; }; /** * For streaming incomplete script data to V8. The embedder should implement a * subclass of this class. */ class V8_EXPORT ExternalSourceStream { public: virtual ~ExternalSourceStream() = default; /** * V8 calls this to request the next chunk of data from the embedder. This * function will be called on a background thread, so it's OK to block and * wait for the data, if the embedder doesn't have data yet. Returns the * length of the data returned. When the data ends, GetMoreData should * return 0. Caller takes ownership of the data. * * When streaming UTF-8 data, V8 handles multi-byte characters split between * two data chunks, but doesn't handle multi-byte characters split between * more than two data chunks. The embedder can avoid this problem by always * returning at least 2 bytes of data. * * When streaming UTF-16 data, V8 does not handle characters split between * two data chunks. The embedder has to make sure that chunks have an even * length. * * If the embedder wants to cancel the streaming, they should make the next * GetMoreData call return 0. V8 will interpret it as end of data (and most * probably, parsing will fail). The streaming task will return as soon as * V8 has parsed the data it received so far. */ virtual size_t GetMoreData(const uint8_t** src) = 0; /** * V8 calls this method to set a 'bookmark' at the current position in * the source stream, for the purpose of (maybe) later calling * ResetToBookmark. If ResetToBookmark is called later, then subsequent * calls to GetMoreData should return the same data as they did when * SetBookmark was called earlier. * * The embedder may return 'false' to indicate it cannot provide this * functionality. */ virtual bool SetBookmark(); /** * V8 calls this to return to a previously set bookmark. */ virtual void ResetToBookmark(); }; /** * Source code which can be streamed into V8 in pieces. It will be parsed * while streaming and compiled after parsing has completed. StreamedSource * must be kept alive while the streaming task is run (see ScriptStreamingTask * below). */ class V8_EXPORT StreamedSource { public: enum Encoding { ONE_BYTE, TWO_BYTE, UTF8, WINDOWS_1252 }; #if defined(_MSC_VER) && _MSC_VER >= 1910 /* Disable on VS2015 */ V8_DEPRECATED( "This class takes ownership of source_stream, so use the constructor " "taking a unique_ptr to make these semantics clearer") #endif StreamedSource(ExternalSourceStream* source_stream, Encoding encoding); StreamedSource(std::unique_ptr<ExternalSourceStream> source_stream, Encoding encoding); ~StreamedSource(); internal::ScriptStreamingData* impl() const { return impl_.get(); } // Prevent copying. StreamedSource(const StreamedSource&) = delete; StreamedSource& operator=(const StreamedSource&) = delete; private: std::unique_ptr<internal::ScriptStreamingData> impl_; }; /** * A streaming task which the embedder must run on a background thread to * stream scripts into V8. Returned by ScriptCompiler::StartStreaming. */ class V8_EXPORT ScriptStreamingTask final { public: void Run(); private: friend class ScriptCompiler; explicit ScriptStreamingTask(internal::ScriptStreamingData* data) : data_(data) {} internal::ScriptStreamingData* data_; }; enum CompileOptions { kNoCompileOptions = 0, kConsumeCodeCache, kEagerCompile }; /** * The reason for which we are not requesting or providing a code cache. */ enum NoCacheReason { kNoCacheNoReason = 0, kNoCacheBecauseCachingDisabled, kNoCacheBecauseNoResource, kNoCacheBecauseInlineScript, kNoCacheBecauseModule, kNoCacheBecauseStreamingSource, kNoCacheBecauseInspector, kNoCacheBecauseScriptTooSmall, kNoCacheBecauseCacheTooCold, kNoCacheBecauseV8Extension, kNoCacheBecauseExtensionModule, kNoCacheBecausePacScript, kNoCacheBecauseInDocumentWrite, kNoCacheBecauseResourceWithNoCacheHandler, kNoCacheBecauseDeferredProduceCodeCache }; /** * Compiles the specified script (context-independent). * Cached data as part of the source object can be optionally produced to be * consumed later to speed up compilation of identical source scripts. * * Note that when producing cached data, the source must point to NULL for * cached data. When consuming cached data, the cached data must have been * produced by the same version of V8, and the embedder needs to ensure the * cached data is the correct one for the given script. * * \param source Script source code. * \return Compiled script object (context independent; for running it must be * bound to a context). */ static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Compiles the specified script (bound to current context). * * \param source Script source code. * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() * using pre_data speeds compilation if it's done multiple times. * Owned by caller, no references are kept when this function returns. * \return Compiled script object, bound to the context that was active * when this function was called. When run it will always use this * context. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, Source* source, CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Returns a task which streams script data into V8, or NULL if the script * cannot be streamed. The user is responsible for running the task on a * background thread and deleting it. When ran, the task starts parsing the * script, and it will request data from the StreamedSource as needed. When * ScriptStreamingTask::Run exits, all data has been streamed and the script * can be compiled (see Compile below). * * This API allows to start the streaming with as little data as possible, and * the remaining data (for example, the ScriptOrigin) is passed to Compile. */ V8_DEPRECATED("Use ScriptCompiler::StartStreaming instead.") static ScriptStreamingTask* StartStreamingScript( Isolate* isolate, StreamedSource* source, CompileOptions options = kNoCompileOptions); static ScriptStreamingTask* StartStreaming( Isolate* isolate, StreamedSource* source, ScriptType type = ScriptType::kClassic); /** * Compiles a streamed script (bound to current context). * * This can only be called after the streaming has finished * (ScriptStreamingTask has been run). V8 doesn't construct the source string * during streaming, so the embedder needs to pass the full source here. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, StreamedSource* source, Local<String> full_source_string, const ScriptOrigin& origin); /** * Return a version tag for CachedData for the current V8 version & flags. * * This value is meant only for determining whether a previously generated * CachedData instance is still valid; the tag has no other meaing. * * Background: The data carried by CachedData may depend on the exact * V8 version number or current compiler flags. This means that when * persisting CachedData, the embedder must take care to not pass in * data from another V8 version, or the same version with different * features enabled. * * The easiest way to do so is to clear the embedder's cache on any * such change. * * Alternatively, this tag can be stored alongside the cached data and * compared when it is being used. */ static uint32_t CachedDataVersionTag(); /** * Compile an ES module, returning a Module that encapsulates * the compiled code. * * Corresponds to the ParseModule abstract operation in the * ECMAScript specification. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Compiles a streamed module script. * * This can only be called after the streaming has finished * (ScriptStreamingTask has been run). V8 doesn't construct the source string * during streaming, so the embedder needs to pass the full source here. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule( Local<Context> context, StreamedSource* v8_source, Local<String> full_source_string, const ScriptOrigin& origin); /** * Compile a function for a given context. This is equivalent to running * * with (obj) { * return function(args) { ... } * } * * It is possible to specify multiple context extensions (obj in the above * example). */ static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext( Local<Context> context, Source* source, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[], CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason, Local<ScriptOrModule>* script_or_module_out = nullptr); /** * Creates and returns code cache for the specified unbound_script. * This will return nullptr if the script cannot be serialized. The * CachedData returned by this function should be owned by the caller. */ static CachedData* CreateCodeCache(Local<UnboundScript> unbound_script); /** * Creates and returns code cache for the specified unbound_module_script. * This will return nullptr if the script cannot be serialized. The * CachedData returned by this function should be owned by the caller. */ static CachedData* CreateCodeCache( Local<UnboundModuleScript> unbound_module_script); /** * Creates and returns code cache for the specified function that was * previously produced by CompileFunctionInContext. * This will return nullptr if the script cannot be serialized. The * CachedData returned by this function should be owned by the caller. */ static CachedData* CreateCodeCacheForFunction(Local<Function> function); private: static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal( Isolate* isolate, Source* source, CompileOptions options, NoCacheReason no_cache_reason); }; /** * An error message. */ class V8_EXPORT Message { public: Local<String> Get() const; /** * Return the isolate to which the Message belongs. */ Isolate* GetIsolate() const; V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSource( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine( Local<Context> context) const; /** * Returns the origin for the script from where the function causing the * error originates. */ ScriptOrigin GetScriptOrigin() const; /** * Returns the resource name for the script from where the function causing * the error originates. */ Local<Value> GetScriptResourceName() const; /** * Exception stack trace. By default stack traces are not captured for * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows * to change this option. */ Local<StackTrace> GetStackTrace() const; /** * Returns the number, 1-based, of the line where the error occurred. */ V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const; /** * Returns the index within the script of the first character where * the error occurred. */ int GetStartPosition() const; /** * Returns the index within the script of the last character where * the error occurred. */ int GetEndPosition() const; /** * Returns the Wasm function index where the error occurred. Returns -1 if * message is not from a Wasm script. */ int GetWasmFunctionIndex() const; /** * Returns the error level of the message. */ int ErrorLevel() const; /** * Returns the index within the line of the first character where * the error occurred. */ int GetStartColumn() const; V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const; /** * Returns the index within the line of the last character where * the error occurred. */ int GetEndColumn() const; V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const; /** * Passes on the value set by the embedder when it fed the script from which * this Message was generated to V8. */ bool IsSharedCrossOrigin() const; bool IsOpaque() const; // TODO(1245381): Print to a string instead of on a FILE. static void PrintCurrentStackTrace(Isolate* isolate, FILE* out); static const int kNoLineNumberInfo = 0; static const int kNoColumnInfo = 0; static const int kNoScriptIdInfo = 0; static const int kNoWasmFunctionIndexInfo = -1; }; /** * Representation of a JavaScript stack trace. The information collected is a * snapshot of the execution stack and the information remains valid after * execution continues. */ class V8_EXPORT StackTrace { public: /** * Flags that determine what information is placed captured for each * StackFrame when grabbing the current stack trace. * Note: these options are deprecated and we always collect all available * information (kDetailed). */ enum StackTraceOptions { kLineNumber = 1, kColumnOffset = 1 << 1 | kLineNumber, kScriptName = 1 << 2, kFunctionName = 1 << 3, kIsEval = 1 << 4, kIsConstructor = 1 << 5, kScriptNameOrSourceURL = 1 << 6, kScriptId = 1 << 7, kExposeFramesAcrossSecurityOrigins = 1 << 8, kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName, kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL }; /** * Returns a StackFrame at a particular index. */ Local<StackFrame> GetFrame(Isolate* isolate, uint32_t index) const; /** * Returns the number of StackFrames. */ int GetFrameCount() const; /** * Grab a snapshot of the current JavaScript execution stack. * * \param frame_limit The maximum number of stack frames we want to capture. * \param options Enumerates the set of things we will capture for each * StackFrame. */ static Local<StackTrace> CurrentStackTrace( Isolate* isolate, int frame_limit, StackTraceOptions options = kDetailed); }; /** * A single JavaScript stack frame. */ class V8_EXPORT StackFrame { public: /** * Returns the number, 1-based, of the line for the associate function call. * This method will return Message::kNoLineNumberInfo if it is unable to * retrieve the line number, or if kLineNumber was not passed as an option * when capturing the StackTrace. */ int GetLineNumber() const; /** * Returns the 1-based column offset on the line for the associated function * call. * This method will return Message::kNoColumnInfo if it is unable to retrieve * the column number, or if kColumnOffset was not passed as an option when * capturing the StackTrace. */ int GetColumn() const; /** * Returns the id of the script for the function for this StackFrame. * This method will return Message::kNoScriptIdInfo if it is unable to * retrieve the script id, or if kScriptId was not passed as an option when * capturing the StackTrace. */ int GetScriptId() const; /** * Returns the name of the resource that contains the script for the * function for this StackFrame. */ Local<String> GetScriptName() const; /** * Returns the name of the resource that contains the script for the * function for this StackFrame or sourceURL value if the script name * is undefined and its source ends with //# sourceURL=... string or * deprecated //@ sourceURL=... string. */ Local<String> GetScriptNameOrSourceURL() const; /** * Returns the source of the script for the function for this StackFrame. */ Local<String> GetScriptSource() const; /** * Returns the source mapping URL (if one is present) of the script for * the function for this StackFrame. */ Local<String> GetScriptSourceMappingURL() const; /** * Returns the name of the function associated with this stack frame. */ Local<String> GetFunctionName() const; /** * Returns whether or not the associated function is compiled via a call to * eval(). */ bool IsEval() const; /** * Returns whether or not the associated function is called as a * constructor via "new". */ bool IsConstructor() const; /** * Returns whether or not the associated functions is defined in wasm. */ bool IsWasm() const; /** * Returns whether or not the associated function is defined by the user. */ bool IsUserJavaScript() const; }; // A StateTag represents a possible state of the VM. enum StateTag { JS, GC, PARSER, BYTECODE_COMPILER, COMPILER, OTHER, EXTERNAL, ATOMICS_WAIT, IDLE }; // Holds the callee saved registers needed for the stack unwinder. It is the // empty struct if no registers are required. Implemented in // include/v8-unwinder-state.h. struct CalleeSavedRegisters; // A RegisterState represents the current state of registers used // by the sampling profiler API. struct V8_EXPORT RegisterState { RegisterState(); ~RegisterState(); RegisterState(const RegisterState& other); RegisterState& operator=(const RegisterState& other); void* pc; // Instruction pointer. void* sp; // Stack pointer. void* fp; // Frame pointer. void* lr; // Link register (or nullptr on platforms without a link register). // Callee saved registers (or null if no callee saved registers were stored) std::unique_ptr<CalleeSavedRegisters> callee_saved; }; // The output structure filled up by GetStackSample API function. struct SampleInfo { size_t frames_count; // Number of frames collected. StateTag vm_state; // Current VM state. void* external_callback_entry; // External callback address if VM is // executing an external callback. void* top_context; // Incumbent native context address. }; struct MemoryRange { const void* start = nullptr; size_t length_in_bytes = 0; }; struct JSEntryStub { MemoryRange code; }; struct JSEntryStubs { JSEntryStub js_entry_stub; JSEntryStub js_construct_entry_stub; JSEntryStub js_run_microtasks_entry_stub; }; /** * A JSON Parser and Stringifier. */ class V8_EXPORT JSON { public: /** * Tries to parse the string |json_string| and returns it as value if * successful. * * \param the context in which to parse and create the value. * \param json_string The string to parse. * \return The corresponding value if successfully parsed. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse( Local<Context> context, Local<String> json_string); /** * Tries to stringify the JSON-serializable object |json_object| and returns * it as string if successful. * * \param json_object The JSON-serializable object to stringify. * \return The corresponding string if successfully stringified. */ static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify( Local<Context> context, Local<Value> json_object, Local<String> gap = Local<String>()); }; /** * Value serialization compatible with the HTML structured clone algorithm. * The format is backward-compatible (i.e. safe to store to disk). */ class V8_EXPORT ValueSerializer { public: class V8_EXPORT Delegate { public: virtual ~Delegate() = default; /** * Handles the case where a DataCloneError would be thrown in the structured * clone spec. Other V8 embedders may throw some other appropriate exception * type. */ virtual void ThrowDataCloneError(Local<String> message) = 0; /** * The embedder overrides this method to write some kind of host object, if * possible. If not, a suitable exception should be thrown and * Nothing<bool>() returned. */ virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object); /** * Called when the ValueSerializer is going to serialize a * SharedArrayBuffer object. The embedder must return an ID for the * object, using the same ID if this SharedArrayBuffer has already been * serialized in this buffer. When deserializing, this ID will be passed to * ValueDeserializer::GetSharedArrayBufferFromId as |clone_id|. * * If the object cannot be serialized, an * exception should be thrown and Nothing<uint32_t>() returned. */ virtual Maybe<uint32_t> GetSharedArrayBufferId( Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer); virtual Maybe<uint32_t> GetWasmModuleTransferId( Isolate* isolate, Local<WasmModuleObject> module); /** * Allocates memory for the buffer of at least the size provided. The actual * size (which may be greater or equal) is written to |actual_size|. If no * buffer has been allocated yet, nullptr will be provided. * * If the memory cannot be allocated, nullptr should be returned. * |actual_size| will be ignored. It is assumed that |old_buffer| is still * valid in this case and has not been modified. * * The default implementation uses the stdlib's `realloc()` function. */ virtual void* ReallocateBufferMemory(void* old_buffer, size_t size, size_t* actual_size); /** * Frees a buffer allocated with |ReallocateBufferMemory|. * * The default implementation uses the stdlib's `free()` function. */ virtual void FreeBufferMemory(void* buffer); }; explicit ValueSerializer(Isolate* isolate); ValueSerializer(Isolate* isolate, Delegate* delegate); ~ValueSerializer(); /** * Writes out a header, which includes the format version. */ void WriteHeader(); /** * Serializes a JavaScript value into the buffer. */ V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context, Local<Value> value); /** * Returns the stored data (allocated using the delegate's * ReallocateBufferMemory) and its size. This serializer should not be used * once the buffer is released. The contents are undefined if a previous write * has failed. Ownership of the buffer is transferred to the caller. */ V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release(); /** * Marks an ArrayBuffer as havings its contents transferred out of band. * Pass the corresponding ArrayBuffer in the deserializing context to * ValueDeserializer::TransferArrayBuffer. */ void TransferArrayBuffer(uint32_t transfer_id, Local<ArrayBuffer> array_buffer); /** * Indicate whether to treat ArrayBufferView objects as host objects, * i.e. pass them to Delegate::WriteHostObject. This should not be * called when no Delegate was passed. * * The default is not to treat ArrayBufferViews as host objects. */ void SetTreatArrayBufferViewsAsHostObjects(bool mode); /** * Write raw data in various common formats to the buffer. * Note that integer types are written in base-128 varint format, not with a * binary copy. For use during an override of Delegate::WriteHostObject. */ void WriteUint32(uint32_t value); void WriteUint64(uint64_t value); void WriteDouble(double value); void WriteRawBytes(const void* source, size_t length); ValueSerializer(const ValueSerializer&) = delete; void operator=(const ValueSerializer&) = delete; private: struct PrivateData; PrivateData* private_; }; /** * Deserializes values from data written with ValueSerializer, or a compatible * implementation. */ class V8_EXPORT ValueDeserializer { public: class V8_EXPORT Delegate { public: virtual ~Delegate() = default; /** * The embedder overrides this method to read some kind of host object, if * possible. If not, a suitable exception should be thrown and * MaybeLocal<Object>() returned. */ virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate); /** * Get a WasmModuleObject given a transfer_id previously provided * by ValueSerializer::GetWasmModuleTransferId */ virtual MaybeLocal<WasmModuleObject> GetWasmModuleFromId( Isolate* isolate, uint32_t transfer_id); /** * Get a SharedArrayBuffer given a clone_id previously provided * by ValueSerializer::GetSharedArrayBufferId */ virtual MaybeLocal<SharedArrayBuffer> GetSharedArrayBufferFromId( Isolate* isolate, uint32_t clone_id); }; ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size); ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size, Delegate* delegate); ~ValueDeserializer(); /** * Reads and validates a header (including the format version). * May, for example, reject an invalid or unsupported wire format. */ V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context); /** * Deserializes a JavaScript value from the buffer. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context); /** * Accepts the array buffer corresponding to the one passed previously to * ValueSerializer::TransferArrayBuffer. */ void TransferArrayBuffer(uint32_t transfer_id, Local<ArrayBuffer> array_buffer); /** * Similar to TransferArrayBuffer, but for SharedArrayBuffer. * The id is not necessarily in the same namespace as unshared ArrayBuffer * objects. */ void TransferSharedArrayBuffer(uint32_t id, Local<SharedArrayBuffer> shared_array_buffer); /** * Must be called before ReadHeader to enable support for reading the legacy * wire format (i.e., which predates this being shipped). * * Don't use this unless you need to read data written by previous versions of * blink::ScriptValueSerializer. */ void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format); /** * Reads the underlying wire format version. Likely mostly to be useful to * legacy code reading old wire format versions. Must be called after * ReadHeader. */ uint32_t GetWireFormatVersion() const; /** * Reads raw data in various common formats to the buffer. * Note that integer types are read in base-128 varint format, not with a * binary copy. For use during an override of Delegate::ReadHostObject. */ V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value); V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value); V8_WARN_UNUSED_RESULT bool ReadDouble(double* value); V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data); ValueDeserializer(const ValueDeserializer&) = delete; void operator=(const ValueDeserializer&) = delete; private: struct PrivateData; PrivateData* private_; }; // --- Value --- /** * The superclass of all JavaScript values and objects. */ class V8_EXPORT Value : public Data { public: /** * Returns true if this value is the undefined value. See ECMA-262 * 4.3.10. * * This is equivalent to `value === undefined` in JS. */ V8_INLINE bool IsUndefined() const; /** * Returns true if this value is the null value. See ECMA-262 * 4.3.11. * * This is equivalent to `value === null` in JS. */ V8_INLINE bool IsNull() const; /** * Returns true if this value is either the null or the undefined value. * See ECMA-262 * 4.3.11. and 4.3.12 * * This is equivalent to `value == null` in JS. */ V8_INLINE bool IsNullOrUndefined() const; /** * Returns true if this value is true. * * This is not the same as `BooleanValue()`. The latter performs a * conversion to boolean, i.e. the result of `Boolean(value)` in JS, whereas * this checks `value === true`. */ bool IsTrue() const; /** * Returns true if this value is false. * * This is not the same as `!BooleanValue()`. The latter performs a * conversion to boolean, i.e. the result of `!Boolean(value)` in JS, whereas * this checks `value === false`. */ bool IsFalse() const; /** * Returns true if this value is a symbol or a string. * * This is equivalent to * `typeof value === 'string' || typeof value === 'symbol'` in JS. */ bool IsName() const; /** * Returns true if this value is an instance of the String type. * See ECMA-262 8.4. * * This is equivalent to `typeof value === 'string'` in JS. */ V8_INLINE bool IsString() const; /** * Returns true if this value is a symbol. * * This is equivalent to `typeof value === 'symbol'` in JS. */ bool IsSymbol() const; /** * Returns true if this value is a function. * * This is equivalent to `typeof value === 'function'` in JS. */ bool IsFunction() const; /** * Returns true if this value is an array. Note that it will return false for * an Proxy for an array. */ bool IsArray() const; /** * Returns true if this value is an object. */ bool IsObject() const; /** * Returns true if this value is a bigint. * * This is equivalent to `typeof value === 'bigint'` in JS. */ bool IsBigInt() const; /** * Returns true if this value is boolean. * * This is equivalent to `typeof value === 'boolean'` in JS. */ bool IsBoolean() const; /** * Returns true if this value is a number. * * This is equivalent to `typeof value === 'number'` in JS. */ bool IsNumber() const; /** * Returns true if this value is an `External` object. */ bool IsExternal() const; /** * Returns true if this value is a 32-bit signed integer. */ bool IsInt32() const; /** * Returns true if this value is a 32-bit unsigned integer. */ bool IsUint32() const; /** * Returns true if this value is a Date. */ bool IsDate() const; /** * Returns true if this value is an Arguments object. */ bool IsArgumentsObject() const; /** * Returns true if this value is a BigInt object. */ bool IsBigIntObject() const; /** * Returns true if this value is a Boolean object. */ bool IsBooleanObject() const; /** * Returns true if this value is a Number object. */ bool IsNumberObject() const; /** * Returns true if this value is a String object. */ bool IsStringObject() const; /** * Returns true if this value is a Symbol object. */ bool IsSymbolObject() const; /** * Returns true if this value is a NativeError. */ bool IsNativeError() const; /** * Returns true if this value is a RegExp. */ bool IsRegExp() const; /** * Returns true if this value is an async function. */ bool IsAsyncFunction() const; /** * Returns true if this value is a Generator function. */ bool IsGeneratorFunction() const; /** * Returns true if this value is a Generator object (iterator). */ bool IsGeneratorObject() const; /** * Returns true if this value is a Promise. */ bool IsPromise() const; /** * Returns true if this value is a Map. */ bool IsMap() const; /** * Returns true if this value is a Set. */ bool IsSet() const; /** * Returns true if this value is a Map Iterator. */ bool IsMapIterator() const; /** * Returns true if this value is a Set Iterator. */ bool IsSetIterator() const; /** * Returns true if this value is a WeakMap. */ bool IsWeakMap() const; /** * Returns true if this value is a WeakSet. */ bool IsWeakSet() const; /** * Returns true if this value is an ArrayBuffer. */ bool IsArrayBuffer() const; /** * Returns true if this value is an ArrayBufferView. */ bool IsArrayBufferView() const; /** * Returns true if this value is one of TypedArrays. */ bool IsTypedArray() const; /** * Returns true if this value is an Uint8Array. */ bool IsUint8Array() const; /** * Returns true if this value is an Uint8ClampedArray. */ bool IsUint8ClampedArray() const; /** * Returns true if this value is an Int8Array. */ bool IsInt8Array() const; /** * Returns true if this value is an Uint16Array. */ bool IsUint16Array() const; /** * Returns true if this value is an Int16Array. */ bool IsInt16Array() const; /** * Returns true if this value is an Uint32Array. */ bool IsUint32Array() const; /** * Returns true if this value is an Int32Array. */ bool IsInt32Array() const; /** * Returns true if this value is a Float32Array. */ bool IsFloat32Array() const; /** * Returns true if this value is a Float64Array. */ bool IsFloat64Array() const; /** * Returns true if this value is a BigInt64Array. */ bool IsBigInt64Array() const; /** * Returns true if this value is a BigUint64Array. */ bool IsBigUint64Array() const; /** * Returns true if this value is a DataView. */ bool IsDataView() const; /** * Returns true if this value is a SharedArrayBuffer. */ bool IsSharedArrayBuffer() const; /** * Returns true if this value is a JavaScript Proxy. */ bool IsProxy() const; /** * Returns true if this value is a WasmMemoryObject. */ bool IsWasmMemoryObject() const; /** * Returns true if this value is a WasmModuleObject. */ bool IsWasmModuleObject() const; /** * Returns true if the value is a Module Namespace Object. */ bool IsModuleNamespaceObject() const; /** * Perform the equivalent of `BigInt(value)` in JS. */ V8_WARN_UNUSED_RESULT MaybeLocal<BigInt> ToBigInt( Local<Context> context) const; /** * Perform the equivalent of `Number(value)` in JS. */ V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber( Local<Context> context) const; /** * Perform the equivalent of `String(value)` in JS. */ V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString( Local<Context> context) const; /** * Provide a string representation of this value usable for debugging. * This operation has no observable side effects and will succeed * unless e.g. execution is being terminated. */ V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString( Local<Context> context) const; /** * Perform the equivalent of `Object(value)` in JS. */ V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject( Local<Context> context) const; /** * Perform the equivalent of `Number(value)` in JS and convert the result * to an integer. Negative values are rounded up, positive values are rounded * down. NaN is converted to 0. Infinite values yield undefined results. */ V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger( Local<Context> context) const; /** * Perform the equivalent of `Number(value)` in JS and convert the result * to an unsigned 32-bit integer by performing the steps in * https://tc39.es/ecma262/#sec-touint32. */ V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32( Local<Context> context) const; /** * Perform the equivalent of `Number(value)` in JS and convert the result * to a signed 32-bit integer by performing the steps in * https://tc39.es/ecma262/#sec-toint32. */ V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const; /** * Perform the equivalent of `Boolean(value)` in JS. This can never fail. */ Local<Boolean> ToBoolean(Isolate* isolate) const; /** * Attempts to convert a string to an array index. * Returns an empty handle if the conversion fails. */ V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex( Local<Context> context) const; /** Returns the equivalent of `ToBoolean()->Value()`. */ bool BooleanValue(Isolate* isolate) const; /** Returns the equivalent of `ToNumber()->Value()`. */ V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const; /** Returns the equivalent of `ToInteger()->Value()`. */ V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue( Local<Context> context) const; /** Returns the equivalent of `ToUint32()->Value()`. */ V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value( Local<Context> context) const; /** Returns the equivalent of `ToInt32()->Value()`. */ V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const; /** JS == */ V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context, Local<Value> that) const; bool StrictEquals(Local<Value> that) const; bool SameValue(Local<Value> that) const; template <class T> V8_INLINE static Value* Cast(T* value); Local<String> TypeOf(Isolate*); Maybe<bool> InstanceOf(Local<Context> context, Local<Object> object); private: V8_INLINE bool QuickIsUndefined() const; V8_INLINE bool QuickIsNull() const; V8_INLINE bool QuickIsNullOrUndefined() const; V8_INLINE bool QuickIsString() const; bool FullIsUndefined() const; bool FullIsNull() const; bool FullIsString() const; static void CheckCast(Data* that); }; /** * The superclass of primitive values. See ECMA-262 4.3.2. */ class V8_EXPORT Primitive : public Value { }; /** * A primitive boolean value (ECMA-262, 4.3.14). Either the true * or false value. */ class V8_EXPORT Boolean : public Primitive { public: bool Value() const; V8_INLINE static Boolean* Cast(v8::Data* data); V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value); private: static void CheckCast(v8::Data* that); }; /** * A superclass for symbols and strings. */ class V8_EXPORT Name : public Primitive { public: /** * Returns the identity hash for this object. The current implementation * uses an inline property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); V8_INLINE static Name* Cast(Data* data); private: static void CheckCast(Data* that); }; /** * A flag describing different modes of string creation. * * Aside from performance implications there are no differences between the two * creation modes. */ enum class NewStringType { /** * Create a new string, always allocating new storage memory. */ kNormal, /** * Acts as a hint that the string should be created in the * old generation heap space and be deduplicated if an identical string * already exists. */ kInternalized }; /** * A JavaScript string value (ECMA-262, 4.3.17). */ class V8_EXPORT String : public Name { public: static constexpr int kMaxLength = internal::kApiSystemPointerSize == 4 ? (1 << 28) - 16 : (1 << 29) - 24; enum Encoding { UNKNOWN_ENCODING = 0x1, TWO_BYTE_ENCODING = 0x0, ONE_BYTE_ENCODING = 0x8 }; /** * Returns the number of characters (UTF-16 code units) in this string. */ int Length() const; /** * Returns the number of bytes in the UTF-8 encoded * representation of this string. */ int Utf8Length(Isolate* isolate) const; /** * Returns whether this string is known to contain only one byte data, * i.e. ISO-8859-1 code points. * Does not read the string. * False negatives are possible. */ bool IsOneByte() const; /** * Returns whether this string contain only one byte data, * i.e. ISO-8859-1 code points. * Will read the entire string in some cases. */ bool ContainsOnlyOneByte() const; /** * Write the contents of the string to an external buffer. * If no arguments are given, expects the buffer to be large * enough to hold the entire string and NULL terminator. Copies * the contents of the string and the NULL terminator into the * buffer. * * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop * before the end of the buffer. * * Copies up to length characters into the output buffer. * Only null-terminates if there is enough space in the buffer. * * \param buffer The buffer into which the string will be copied. * \param start The starting position within the string at which * copying begins. * \param length The number of characters to copy from the string. For * WriteUtf8 the number of bytes in the buffer. * \param nchars_ref The number of characters written, can be NULL. * \param options Various options that might affect performance of this or * subsequent operations. * \return The number of characters copied to the buffer excluding the null * terminator. For WriteUtf8: The number of bytes copied to the buffer * including the null terminator (if written). */ enum WriteOptions { NO_OPTIONS = 0, HINT_MANY_WRITES_EXPECTED = 1, NO_NULL_TERMINATION = 2, PRESERVE_ONE_BYTE_NULL = 4, // Used by WriteUtf8 to replace orphan surrogate code units with the // unicode replacement character. Needs to be set to guarantee valid UTF-8 // output. REPLACE_INVALID_UTF8 = 8 }; // 16-bit character codes. int Write(Isolate* isolate, uint16_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; // One byte characters. int WriteOneByte(Isolate* isolate, uint8_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; // UTF-8 encoded characters. int WriteUtf8(Isolate* isolate, char* buffer, int length = -1, int* nchars_ref = nullptr, int options = NO_OPTIONS) const; /** * A zero length string. */ V8_INLINE static Local<String> Empty(Isolate* isolate); /** * Returns true if the string is external. */ bool IsExternal() const; /** * Returns true if the string is both external and two-byte. */ bool IsExternalTwoByte() const; /** * Returns true if the string is both external and one-byte. */ bool IsExternalOneByte() const; class V8_EXPORT ExternalStringResourceBase { public: virtual ~ExternalStringResourceBase() = default; /** * If a string is cacheable, the value returned by * ExternalStringResource::data() may be cached, otherwise it is not * expected to be stable beyond the current top-level task. */ virtual bool IsCacheable() const { return true; } // Disallow copying and assigning. ExternalStringResourceBase(const ExternalStringResourceBase&) = delete; void operator=(const ExternalStringResourceBase&) = delete; protected: ExternalStringResourceBase() = default; /** * Internally V8 will call this Dispose method when the external string * resource is no longer needed. The default implementation will use the * delete operator. This method can be overridden in subclasses to * control how allocated external string resources are disposed. */ virtual void Dispose() { delete this; } /** * For a non-cacheable string, the value returned by * |ExternalStringResource::data()| has to be stable between |Lock()| and * |Unlock()|, that is the string must behave as is |IsCacheable()| returned * true. * * These two functions must be thread-safe, and can be called from anywhere. * They also must handle lock depth, in the sense that each can be called * several times, from different threads, and unlocking should only happen * when the balance of Lock() and Unlock() calls is 0. */ virtual void Lock() const {} /** * Unlocks the string. */ virtual void Unlock() const {} private: friend class internal::ExternalString; friend class v8::String; friend class internal::ScopedExternalStringLock; }; /** * An ExternalStringResource is a wrapper around a two-byte string * buffer that resides outside V8's heap. Implement an * ExternalStringResource to manage the life cycle of the underlying * buffer. Note that the string data must be immutable. */ class V8_EXPORT ExternalStringResource : public ExternalStringResourceBase { public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ ~ExternalStringResource() override = default; /** * The string data from the underlying buffer. If the resource is cacheable * then data() must return the same value for all invocations. */ virtual const uint16_t* data() const = 0; /** * The length of the string. That is, the number of two-byte characters. */ virtual size_t length() const = 0; /** * Returns the cached data from the underlying buffer. This method can be * called only for cacheable resources (i.e. IsCacheable() == true) and only * after UpdateDataCache() was called. */ const uint16_t* cached_data() const { CheckCachedDataInvariants(); return cached_data_; } /** * Update {cached_data_} with the data from the underlying buffer. This can * be called only for cacheable resources. */ void UpdateDataCache(); protected: ExternalStringResource() = default; private: void CheckCachedDataInvariants() const; const uint16_t* cached_data_ = nullptr; }; /** * An ExternalOneByteStringResource is a wrapper around an one-byte * string buffer that resides outside V8's heap. Implement an * ExternalOneByteStringResource to manage the life cycle of the * underlying buffer. Note that the string data must be immutable * and that the data must be Latin-1 and not UTF-8, which would require * special treatment internally in the engine and do not allow efficient * indexing. Use String::New or convert to 16 bit data for non-Latin1. */ class V8_EXPORT ExternalOneByteStringResource : public ExternalStringResourceBase { public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ ~ExternalOneByteStringResource() override = default; /** * The string data from the underlying buffer. If the resource is cacheable * then data() must return the same value for all invocations. */ virtual const char* data() const = 0; /** The number of Latin-1 characters in the string.*/ virtual size_t length() const = 0; /** * Returns the cached data from the underlying buffer. If the resource is * uncacheable or if UpdateDataCache() was not called before, it has * undefined behaviour. */ const char* cached_data() const { CheckCachedDataInvariants(); return cached_data_; } /** * Update {cached_data_} with the data from the underlying buffer. This can * be called only for cacheable resources. */ void UpdateDataCache(); protected: ExternalOneByteStringResource() = default; private: void CheckCachedDataInvariants() const; const char* cached_data_ = nullptr; }; /** * If the string is an external string, return the ExternalStringResourceBase * regardless of the encoding, otherwise return NULL. The encoding of the * string is returned in encoding_out. */ V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase( Encoding* encoding_out) const; /** * Get the ExternalStringResource for an external string. Returns * NULL if IsExternal() doesn't return true. */ V8_INLINE ExternalStringResource* GetExternalStringResource() const; /** * Get the ExternalOneByteStringResource for an external one-byte string. * Returns NULL if IsExternalOneByte() doesn't return true. */ const ExternalOneByteStringResource* GetExternalOneByteStringResource() const; V8_INLINE static String* Cast(v8::Data* data); /** * Allocates a new string from a UTF-8 literal. This is equivalent to calling * String::NewFromUtf(isolate, "...").ToLocalChecked(), but without the check * overhead. * * When called on a string literal containing '\0', the inferred length is the * length of the input array minus 1 (for the final '\0') and not the value * returned by strlen. **/ template <int N> static V8_WARN_UNUSED_RESULT Local<String> NewFromUtf8Literal( Isolate* isolate, const char (&literal)[N], NewStringType type = NewStringType::kNormal) { static_assert(N <= kMaxLength, "String is too long"); return NewFromUtf8Literal(isolate, literal, type, N - 1); } /** Allocates a new string from UTF-8 data. Only returns an empty value when * length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8( Isolate* isolate, const char* data, NewStringType type = NewStringType::kNormal, int length = -1); /** Allocates a new string from Latin-1 data. Only returns an empty value * when length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte( Isolate* isolate, const uint8_t* data, NewStringType type = NewStringType::kNormal, int length = -1); /** Allocates a new string from UTF-16 data. Only returns an empty value when * length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte( Isolate* isolate, const uint16_t* data, NewStringType type = NewStringType::kNormal, int length = -1); /** * Creates a new string by concatenating the left and the right strings * passed in as parameters. */ static Local<String> Concat(Isolate* isolate, Local<String> left, Local<String> right); /** * Creates a new external string using the data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte( Isolate* isolate, ExternalStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalStringResource* resource); /** * Creates a new external string using the one-byte data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte( Isolate* isolate, ExternalOneByteStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalOneByteStringResource* resource); /** * Returns true if this string can be made external. */ bool CanMakeExternal(); /** * Returns true if the strings values are equal. Same as JS ==/===. */ bool StringEquals(Local<String> str); /** * Converts an object to a UTF-8-encoded character array. Useful if * you want to print the object. If conversion to a string fails * (e.g. due to an exception in the toString() method of the object) * then the length() method returns 0 and the * operator returns * NULL. */ class V8_EXPORT Utf8Value { public: Utf8Value(Isolate* isolate, Local<v8::Value> obj); ~Utf8Value(); char* operator*() { return str_; } const char* operator*() const { return str_; } int length() const { return length_; } // Disallow copying and assigning. Utf8Value(const Utf8Value&) = delete; void operator=(const Utf8Value&) = delete; private: char* str_; int length_; }; /** * Converts an object to a two-byte (UTF-16-encoded) string. * If conversion to a string fails (eg. due to an exception in the toString() * method of the object) then the length() method returns 0 and the * operator * returns NULL. */ class V8_EXPORT Value { public: Value(Isolate* isolate, Local<v8::Value> obj); ~Value(); uint16_t* operator*() { return str_; } const uint16_t* operator*() const { return str_; } int length() const { return length_; } // Disallow copying and assigning. Value(const Value&) = delete; void operator=(const Value&) = delete; private: uint16_t* str_; int length_; }; private: void VerifyExternalStringResourceBase(ExternalStringResourceBase* v, Encoding encoding) const; void VerifyExternalStringResource(ExternalStringResource* val) const; ExternalStringResource* GetExternalStringResourceSlow() const; ExternalStringResourceBase* GetExternalStringResourceBaseSlow( String::Encoding* encoding_out) const; static Local<v8::String> NewFromUtf8Literal(Isolate* isolate, const char* literal, NewStringType type, int length); static void CheckCast(v8::Data* that); }; // Zero-length string specialization (templated string size includes // terminator). template <> inline V8_WARN_UNUSED_RESULT Local<String> String::NewFromUtf8Literal( Isolate* isolate, const char (&literal)[1], NewStringType type) { return String::Empty(isolate); } /** * A JavaScript symbol (ECMA-262 edition 6) */ class V8_EXPORT Symbol : public Name { public: /** * Returns the description string of the symbol, or undefined if none. */ Local<Value> Description() const; Local<Value> Description(Isolate* isolate) const; V8_DEPRECATED("Use Symbol::Description()") Local<Value> Name() const { return Description(); } /** * Create a symbol. If description is not empty, it will be used as the * description. */ static Local<Symbol> New(Isolate* isolate, Local<String> description = Local<String>()); /** * Access global symbol registry. * Note that symbols created this way are never collected, so * they should only be used for statically fixed properties. * Also, there is only one global name space for the descriptions used as * keys. * To minimize the potential for clashes, use qualified names as keys. */ static Local<Symbol> For(Isolate* isolate, Local<String> description); /** * Retrieve a global symbol. Similar to |For|, but using a separate * registry that is not accessible by (and cannot clash with) JavaScript code. */ static Local<Symbol> ForApi(Isolate* isolate, Local<String> description); // Well-known symbols static Local<Symbol> GetAsyncIterator(Isolate* isolate); static Local<Symbol> GetHasInstance(Isolate* isolate); static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate); static Local<Symbol> GetIterator(Isolate* isolate); static Local<Symbol> GetMatch(Isolate* isolate); static Local<Symbol> GetReplace(Isolate* isolate); static Local<Symbol> GetSearch(Isolate* isolate); static Local<Symbol> GetSplit(Isolate* isolate); static Local<Symbol> GetToPrimitive(Isolate* isolate); static Local<Symbol> GetToStringTag(Isolate* isolate); static Local<Symbol> GetUnscopables(Isolate* isolate); V8_INLINE static Symbol* Cast(Data* data); private: Symbol(); static void CheckCast(Data* that); }; /** * A private symbol * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT Private : public Data { public: /** * Returns the print name string of the private symbol, or undefined if none. */ Local<Value> Name() const; /** * Create a private symbol. If name is not empty, it will be the description. */ static Local<Private> New(Isolate* isolate, Local<String> name = Local<String>()); /** * Retrieve a global private symbol. If a symbol with this name has not * been retrieved in the same isolate before, it is created. * Note that private symbols created this way are never collected, so * they should only be used for statically fixed properties. * Also, there is only one global name space for the names used as keys. * To minimize the potential for clashes, use qualified names as keys, * e.g., "Class#property". */ static Local<Private> ForApi(Isolate* isolate, Local<String> name); V8_INLINE static Private* Cast(Data* data); private: Private(); static void CheckCast(Data* that); }; /** * A JavaScript number value (ECMA-262, 4.3.20) */ class V8_EXPORT Number : public Primitive { public: double Value() const; static Local<Number> New(Isolate* isolate, double value); V8_INLINE static Number* Cast(v8::Data* data); private: Number(); static void CheckCast(v8::Data* that); }; /** * A JavaScript value representing a signed integer. */ class V8_EXPORT Integer : public Number { public: static Local<Integer> New(Isolate* isolate, int32_t value); static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value); int64_t Value() const; V8_INLINE static Integer* Cast(v8::Data* data); private: Integer(); static void CheckCast(v8::Data* that); }; /** * A JavaScript value representing a 32-bit signed integer. */ class V8_EXPORT Int32 : public Integer { public: int32_t Value() const; V8_INLINE static Int32* Cast(v8::Data* data); private: Int32(); static void CheckCast(v8::Data* that); }; /** * A JavaScript value representing a 32-bit unsigned integer. */ class V8_EXPORT Uint32 : public Integer { public: uint32_t Value() const; V8_INLINE static Uint32* Cast(v8::Data* data); private: Uint32(); static void CheckCast(v8::Data* that); }; /** * A JavaScript BigInt value (https://tc39.github.io/proposal-bigint) */ class V8_EXPORT BigInt : public Primitive { public: static Local<BigInt> New(Isolate* isolate, int64_t value); static Local<BigInt> NewFromUnsigned(Isolate* isolate, uint64_t value); /** * Creates a new BigInt object using a specified sign bit and a * specified list of digits/words. * The resulting number is calculated as: * * (-1)^sign_bit * (words[0] * (2^64)^0 + words[1] * (2^64)^1 + ...) */ static MaybeLocal<BigInt> NewFromWords(Local<Context> context, int sign_bit, int word_count, const uint64_t* words); /** * Returns the value of this BigInt as an unsigned 64-bit integer. * If `lossless` is provided, it will reflect whether the return value was * truncated or wrapped around. In particular, it is set to `false` if this * BigInt is negative. */ uint64_t Uint64Value(bool* lossless = nullptr) const; /** * Returns the value of this BigInt as a signed 64-bit integer. * If `lossless` is provided, it will reflect whether this BigInt was * truncated or not. */ int64_t Int64Value(bool* lossless = nullptr) const; /** * Returns the number of 64-bit words needed to store the result of * ToWordsArray(). */ int WordCount() const; /** * Writes the contents of this BigInt to a specified memory location. * `sign_bit` must be provided and will be set to 1 if this BigInt is * negative. * `*word_count` has to be initialized to the length of the `words` array. * Upon return, it will be set to the actual number of words that would * be needed to store this BigInt (i.e. the return value of `WordCount()`). */ void ToWordsArray(int* sign_bit, int* word_count, uint64_t* words) const; V8_INLINE static BigInt* Cast(v8::Data* data); private: BigInt(); static void CheckCast(v8::Data* that); }; /** * PropertyAttribute. */ enum PropertyAttribute { /** None. **/ None = 0, /** ReadOnly, i.e., not writable. **/ ReadOnly = 1 << 0, /** DontEnum, i.e., not enumerable. **/ DontEnum = 1 << 1, /** DontDelete, i.e., not configurable. **/ DontDelete = 1 << 2 }; /** * Accessor[Getter|Setter] are used as callback functions when * setting|getting a particular property. See Object and ObjectTemplate's * method SetAccessor. */ using AccessorGetterCallback = void (*)(Local<String> property, const PropertyCallbackInfo<Value>& info); using AccessorNameGetterCallback = void (*)(Local<Name> property, const PropertyCallbackInfo<Value>& info); using AccessorSetterCallback = void (*)(Local<String> property, Local<Value> value, const PropertyCallbackInfo<void>& info); using AccessorNameSetterCallback = void (*)(Local<Name> property, Local<Value> value, const PropertyCallbackInfo<void>& info); /** * Access control specifications. * * Some accessors should be accessible across contexts. These * accessors have an explicit access control parameter which specifies * the kind of cross-context access that should be allowed. * * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused. */ enum AccessControl { DEFAULT = 0, ALL_CAN_READ = 1, ALL_CAN_WRITE = 1 << 1, PROHIBITS_OVERWRITING = 1 << 2 }; /** * Property filter bits. They can be or'ed to build a composite filter. */ enum PropertyFilter { ALL_PROPERTIES = 0, ONLY_WRITABLE = 1, ONLY_ENUMERABLE = 2, ONLY_CONFIGURABLE = 4, SKIP_STRINGS = 8, SKIP_SYMBOLS = 16 }; /** * Options for marking whether callbacks may trigger JS-observable side effects. * Side-effect-free callbacks are allowlisted during debug evaluation with * throwOnSideEffect. It applies when calling a Function, FunctionTemplate, * or an Accessor callback. For Interceptors, please see * PropertyHandlerFlags's kHasNoSideEffect. * Callbacks that only cause side effects to the receiver are allowlisted if * invoked on receiver objects that are created within the same debug-evaluate * call, as these objects are temporary and the side effect does not escape. */ enum class SideEffectType { kHasSideEffect, kHasNoSideEffect, kHasSideEffectToReceiver }; /** * Keys/Properties filter enums: * * KeyCollectionMode limits the range of collected properties. kOwnOnly limits * the collected properties to the given Object only. kIncludesPrototypes will * include all keys of the objects's prototype chain as well. */ enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes }; /** * kIncludesIndices allows for integer indices to be collected, while * kSkipIndices will exclude integer indices from being collected. */ enum class IndexFilter { kIncludeIndices, kSkipIndices }; /** * kConvertToString will convert integer indices to strings. * kKeepNumbers will return numbers for integer indices. */ enum class KeyConversionMode { kConvertToString, kKeepNumbers, kNoNumbers }; /** * Integrity level for objects. */ enum class IntegrityLevel { kFrozen, kSealed }; /** * A JavaScript object (ECMA-262, 4.3.3) */ class V8_EXPORT Object : public Value { public: /** * Set only return Just(true) or Empty(), so if it should never fail, use * result.Check(). */ V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index, Local<Value> value); // Implements CreateDataProperty (ECMA-262, 7.3.4). // // Defines a configurable, writable, enumerable property with the given value // on the object unless the property already exists and is not configurable // or the object is not extensible. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, Local<Name> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, uint32_t index, Local<Value> value); // Implements DefineOwnProperty. // // In general, CreateDataProperty will be faster, however, does not allow // for specifying attributes. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty( Local<Context> context, Local<Name> key, Local<Value> value, PropertyAttribute attributes = None); // Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4. // // The defineProperty function is used to add an own property or // update the attributes of an existing own property of an object. // // Both data and accessor descriptors can be used. // // In general, CreateDataProperty is faster, however, does not allow // for specifying attributes or an accessor descriptor. // // The PropertyDescriptor can change when redefining a property. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty( Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, uint32_t index); /** * Gets the property attributes of a property which can be None or * any combination of ReadOnly, DontEnum and DontDelete. Returns * None when the property doesn't exist. */ V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes( Local<Context> context, Local<Value> key); /** * Returns Object.getOwnPropertyDescriptor as per ES2016 section 19.1.2.6. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor( Local<Context> context, Local<Name> key); /** * Object::Has() calls the abstract operation HasProperty(O, P) described * in ECMA-262, 7.3.10. Has() returns * true, if the object has the property, either own or on the prototype chain. * Interceptors, i.e., PropertyQueryCallbacks, are called if present. * * Has() has the same side effects as JavaScript's `variable in object`. * For example, calling Has() on a revoked proxy will throw an exception. * * \note Has() converts the key to a name, which possibly calls back into * JavaScript. * * See also v8::Object::HasOwnProperty() and * v8::Object::HasRealNamedProperty(). */ V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, uint32_t index); /** * Note: SideEffectType affects the getter only, not the setter. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetAccessor( Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = nullptr, MaybeLocal<Value> data = MaybeLocal<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); void SetAccessorProperty(Local<Name> name, Local<Function> getter, Local<Function> setter = Local<Function>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); /** * Sets a native data property like Template::SetNativeDataProperty, but * this method sets on this object directly. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetNativeDataProperty( Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = nullptr, Local<Value> data = Local<Value>(), PropertyAttribute attributes = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); /** * Attempts to create a property with the given name which behaves like a data * property, except that the provided getter is invoked (and provided with the * data value) to supply its value the first time it is read. After the * property is accessed once, it is replaced with an ordinary data property. * * Analogous to Template::SetLazyDataProperty. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetLazyDataProperty( Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, Local<Value> data = Local<Value>(), PropertyAttribute attributes = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); /** * Functionality for private properties. * This is an experimental feature, use at your own risk. * Note: Private properties are not inherited. Do not rely on this, since it * may change. */ Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key); Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key, Local<Value> value); Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key); MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key); /** * Returns an array containing the names of the enumerable properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context, KeyCollectionMode mode, PropertyFilter property_filter, IndexFilter index_filter, KeyConversionMode key_conversion = KeyConversionMode::kKeepNumbers); /** * This function has the same functionality as GetPropertyNames but * the returned array doesn't contain the names of properties from * prototype objects. */ V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context); /** * Returns an array containing the names of the filtered properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context, PropertyFilter filter, KeyConversionMode key_conversion = KeyConversionMode::kKeepNumbers); /** * Get the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ Local<Value> GetPrototype(); /** * Set the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context, Local<Value> prototype); /** * Finds an instance of the given function template in the prototype * chain. */ Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl); /** * Call builtin Object.prototype.toString on this object. * This is different from Value::ToString() that may call * user-defined toString function. This one does not. */ V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString( Local<Context> context); /** * Returns the name of the function invoked as a constructor for this object. */ Local<String> GetConstructorName(); /** * Sets the integrity level of the object. */ Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level); /** Gets the number of internal fields for this Object. */ int InternalFieldCount(); /** Same as above, but works for PersistentBase. */ V8_INLINE static int InternalFieldCount( const PersistentBase<Object>& object) { return object.val_->InternalFieldCount(); } /** Same as above, but works for BasicTracedReference. */ V8_INLINE static int InternalFieldCount( const BasicTracedReference<Object>& object) { return object->InternalFieldCount(); } /** Gets the value from an internal field. */ V8_INLINE Local<Value> GetInternalField(int index); /** Sets the value in an internal field. */ void SetInternalField(int index, Local<Value> value); /** * Gets a 2-byte-aligned native pointer from an internal field. This field * must have been set by SetAlignedPointerInInternalField, everything else * leads to undefined behavior. */ V8_INLINE void* GetAlignedPointerFromInternalField(int index); /** Same as above, but works for PersistentBase. */ V8_INLINE static void* GetAlignedPointerFromInternalField( const PersistentBase<Object>& object, int index) { return object.val_->GetAlignedPointerFromInternalField(index); } /** Same as above, but works for TracedGlobal. */ V8_INLINE static void* GetAlignedPointerFromInternalField( const BasicTracedReference<Object>& object, int index) { return object->GetAlignedPointerFromInternalField(index); } /** * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such * a field, GetAlignedPointerFromInternalField must be used, everything else * leads to undefined behavior. */ void SetAlignedPointerInInternalField(int index, void* value); void SetAlignedPointerInInternalFields(int argc, int indices[], void* values[]); /** * HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty(). * * See also v8::Object::Has() and v8::Object::HasRealNamedProperty(). */ V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, Local<Name> key); V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, uint32_t index); /** * Use HasRealNamedProperty() if you want to check if an object has an own * property without causing side effects, i.e., without calling interceptors. * * This function is similar to v8::Object::HasOwnProperty(), but it does not * call interceptors. * * \note Consider using non-masking interceptors, i.e., the interceptors are * not called if the receiver has the real named property. See * `v8::PropertyHandlerFlags::kNonMasking`. * * See also v8::Object::Has(). */ V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context, Local<Name> key); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty( Local<Context> context, uint32_t index); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty( Local<Context> context, Local<Name> key); /** * If result.IsEmpty() no real property was located in the prototype chain. * This means interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain( Local<Context> context, Local<Name> key); /** * Gets the property attributes of a real property in the prototype chain, * which can be None or any combination of ReadOnly, DontEnum and DontDelete. * Interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context, Local<Name> key); /** * If result.IsEmpty() no real property was located on the object or * in the prototype chain. * This means interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty( Local<Context> context, Local<Name> key); /** * Gets the property attributes of a real property which can be * None or any combination of ReadOnly, DontEnum and DontDelete. * Interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes( Local<Context> context, Local<Name> key); /** Tests for a named lookup interceptor.*/ bool HasNamedLookupInterceptor(); /** Tests for an index lookup interceptor.*/ bool HasIndexedLookupInterceptor(); /** * Returns the identity hash for this object. The current implementation * uses a hidden property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); /** * Clone this object with a fast but shallow copy. Values will point * to the same values as the original object. */ // TODO(dcarney): take an isolate and optionally bail out? Local<Object> Clone(); /** * Returns the context in which the object was created. */ // TODO(chromium:1166077): Mark as deprecate once users are updated. V8_DEPRECATE_SOON("Use MaybeLocal<Context> GetCreationContext()") Local<Context> CreationContext(); MaybeLocal<Context> GetCreationContext(); /** Same as above, but works for Persistents */ // TODO(chromium:1166077): Mark as deprecate once users are updated. V8_DEPRECATE_SOON( "Use MaybeLocal<Context> GetCreationContext(const " "PersistentBase<Object>& object)") static Local<Context> CreationContext(const PersistentBase<Object>& object); V8_INLINE static MaybeLocal<Context> GetCreationContext( const PersistentBase<Object>& object) { return object.val_->GetCreationContext(); } /** * Checks whether a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * When an Object is callable this method returns true. */ bool IsCallable(); /** * True if this object is a constructor. */ bool IsConstructor(); /** * True if this object can carry information relevant to the embedder in its * embedder fields, false otherwise. This is generally true for objects * constructed through function templates but also holds for other types where * V8 automatically adds internal fields at compile time, such as e.g. * v8::ArrayBuffer. */ bool IsApiWrapper(); /** * True if this object was created from an object template which was marked * as undetectable. See v8::ObjectTemplate::MarkAsUndetectable for more * information. */ bool IsUndetectable(); /** * Call an Object as a function if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); /** * Call an Object as a constructor if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * Note: This method behaves like the Function::NewInstance method. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor( Local<Context> context, int argc, Local<Value> argv[]); /** * Return the isolate to which the Object belongs to. */ Isolate* GetIsolate(); /** * If this object is a Set, Map, WeakSet or WeakMap, this returns a * representation of the elements of this object as an array. * If this object is a SetIterator or MapIterator, this returns all * elements of the underlying collection, starting at the iterator's current * position. * For other types, this will return an empty MaybeLocal<Array> (without * scheduling an exception). */ MaybeLocal<Array> PreviewEntries(bool* is_key_value); static Local<Object> New(Isolate* isolate); /** * Creates a JavaScript object with the given properties, and * a the given prototype_or_null (which can be any JavaScript * value, and if it's null, the newly created object won't have * a prototype at all). This is similar to Object.create(). * All properties will be created as enumerable, configurable * and writable properties. */ static Local<Object> New(Isolate* isolate, Local<Value> prototype_or_null, Local<Name>* names, Local<Value>* values, size_t length); V8_INLINE static Object* Cast(Value* obj); /** * Support for TC39 "dynamic code brand checks" proposal. * * This API allows to query whether an object was constructed from a * "code like" ObjectTemplate. * * See also: v8::ObjectTemplate::SetCodeLike */ bool IsCodeLike(Isolate* isolate); private: Object(); static void CheckCast(Value* obj); Local<Value> SlowGetInternalField(int index); void* SlowGetAlignedPointerFromInternalField(int index); }; /** * An instance of the built-in array constructor (ECMA-262, 15.4.2). */ class V8_EXPORT Array : public Object { public: uint32_t Length() const; /** * Creates a JavaScript array with the given length. If the length * is negative the returned array will have length 0. */ static Local<Array> New(Isolate* isolate, int length = 0); /** * Creates a JavaScript array out of a Local<Value> array in C++ * with a known length. */ static Local<Array> New(Isolate* isolate, Local<Value>* elements, size_t length); V8_INLINE static Array* Cast(Value* obj); private: Array(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1). */ class V8_EXPORT Map : public Object { public: size_t Size() const; void Clear(); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); /** * Returns an array of length Size() * 2, where index N is the Nth key and * index N + 1 is the Nth value. */ Local<Array> AsArray() const; /** * Creates a new empty Map. */ static Local<Map> New(Isolate* isolate); V8_INLINE static Map* Cast(Value* obj); private: Map(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1). */ class V8_EXPORT Set : public Object { public: size_t Size() const; void Clear(); V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); /** * Returns an array of the keys in this Set. */ Local<Array> AsArray() const; /** * Creates a new empty Set. */ static Local<Set> New(Isolate* isolate); V8_INLINE static Set* Cast(Value* obj); private: Set(); static void CheckCast(Value* obj); }; template<typename T> class ReturnValue { public: template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that) : value_(that.value_) { static_assert(std::is_base_of<T, S>::value, "type check"); } // Local setters template <typename S> V8_INLINE void Set(const Global<S>& handle); template <typename S> V8_INLINE void Set(const BasicTracedReference<S>& handle); template <typename S> V8_INLINE void Set(const Local<S> handle); // Fast primitive setters V8_INLINE void Set(bool value); V8_INLINE void Set(double i); V8_INLINE void Set(int32_t i); V8_INLINE void Set(uint32_t i); // Fast JS primitive setters V8_INLINE void SetNull(); V8_INLINE void SetUndefined(); V8_INLINE void SetEmptyString(); // Convenience getter for Isolate V8_INLINE Isolate* GetIsolate() const; // Pointer setter: Uncompilable to prevent inadvertent misuse. template <typename S> V8_INLINE void Set(S* whatever); // Getter. Creates a new Local<> so it comes with a certain performance // hit. If the ReturnValue was not yet set, this will return the undefined // value. V8_INLINE Local<Value> Get() const; private: template<class F> friend class ReturnValue; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; template <class F, class G, class H> friend class PersistentValueMapBase; V8_INLINE void SetInternal(internal::Address value) { *value_ = value; } V8_INLINE internal::Address GetDefaultValue(); V8_INLINE explicit ReturnValue(internal::Address* slot); internal::Address* value_; }; /** * The argument information given to function call callbacks. This * class provides access to information about the context of the call, * including the receiver, the number and values of arguments, and * the holder of the function. */ template<typename T> class FunctionCallbackInfo { public: /** The number of available arguments. */ V8_INLINE int Length() const; /** * Accessor for the available arguments. Returns `undefined` if the index * is out of bounds. */ V8_INLINE Local<Value> operator[](int i) const; /** Returns the receiver. This corresponds to the "this" value. */ V8_INLINE Local<Object> This() const; /** * If the callback was created without a Signature, this is the same * value as This(). If there is a signature, and the signature didn't match * This() but one of its hidden prototypes, this will be the respective * hidden prototype. * * Note that this is not the prototype of This() on which the accessor * referencing this callback was found (which in V8 internally is often * referred to as holder [sic]). */ V8_INLINE Local<Object> Holder() const; /** For construct calls, this returns the "new.target" value. */ V8_INLINE Local<Value> NewTarget() const; /** Indicates whether this is a regular call or a construct call. */ V8_INLINE bool IsConstructCall() const; /** The data argument specified when creating the callback. */ V8_INLINE Local<Value> Data() const; /** The current Isolate. */ V8_INLINE Isolate* GetIsolate() const; /** The ReturnValue for the call. */ V8_INLINE ReturnValue<T> GetReturnValue() const; // This shouldn't be public, but the arm compiler needs it. static const int kArgsLength = 6; protected: friend class internal::FunctionCallbackArguments; friend class internal::CustomArguments<FunctionCallbackInfo>; friend class debug::ConsoleCallArguments; static const int kHolderIndex = 0; static const int kIsolateIndex = 1; static const int kReturnValueDefaultValueIndex = 2; static const int kReturnValueIndex = 3; static const int kDataIndex = 4; static const int kNewTargetIndex = 5; V8_INLINE FunctionCallbackInfo(internal::Address* implicit_args, internal::Address* values, int length); internal::Address* implicit_args_; internal::Address* values_; int length_; }; /** * The information passed to a property callback about the context * of the property access. */ template<typename T> class PropertyCallbackInfo { public: /** * \return The isolate of the property access. */ V8_INLINE Isolate* GetIsolate() const; /** * \return The data set in the configuration, i.e., in * `NamedPropertyHandlerConfiguration` or * `IndexedPropertyHandlerConfiguration.` */ V8_INLINE Local<Value> Data() const; /** * \return The receiver. In many cases, this is the object on which the * property access was intercepted. When using * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the * object passed in as receiver or thisArg. * * \code * void GetterCallback(Local<Name> name, * const v8::PropertyCallbackInfo<v8::Value>& info) { * auto context = info.GetIsolate()->GetCurrentContext(); * * v8::Local<v8::Value> a_this = * info.This() * ->GetRealNamedProperty(context, v8_str("a")) * .ToLocalChecked(); * v8::Local<v8::Value> a_holder = * info.Holder() * ->GetRealNamedProperty(context, v8_str("a")) * .ToLocalChecked(); * * CHECK(v8_str("r")->Equals(context, a_this).FromJust()); * CHECK(v8_str("obj")->Equals(context, a_holder).FromJust()); * * info.GetReturnValue().Set(name); * } * * v8::Local<v8::FunctionTemplate> templ = * v8::FunctionTemplate::New(isolate); * templ->InstanceTemplate()->SetHandler( * v8::NamedPropertyHandlerConfiguration(GetterCallback)); * LocalContext env; * env->Global() * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local()) * .ToLocalChecked() * ->NewInstance(env.local()) * .ToLocalChecked()) * .FromJust(); * * CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)"); * \endcode */ V8_INLINE Local<Object> This() const; /** * \return The object in the prototype chain of the receiver that has the * interceptor. Suppose you have `x` and its prototype is `y`, and `y` * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`. * The Holder() could be a hidden object (the global object, rather * than the global proxy). * * \note For security reasons, do not pass the object back into the runtime. */ V8_INLINE Local<Object> Holder() const; /** * \return The return value of the callback. * Can be changed by calling Set(). * \code * info.GetReturnValue().Set(...) * \endcode * */ V8_INLINE ReturnValue<T> GetReturnValue() const; /** * \return True if the intercepted function should throw if an error occurs. * Usually, `true` corresponds to `'use strict'`. * * \note Always `false` when intercepting `Reflect.set()` * independent of the language mode. */ V8_INLINE bool ShouldThrowOnError() const; // This shouldn't be public, but the arm compiler needs it. static const int kArgsLength = 7; protected: friend class MacroAssembler; friend class internal::PropertyCallbackArguments; friend class internal::CustomArguments<PropertyCallbackInfo>; static const int kShouldThrowOnErrorIndex = 0; static const int kHolderIndex = 1; static const int kIsolateIndex = 2; static const int kReturnValueDefaultValueIndex = 3; static const int kReturnValueIndex = 4; static const int kDataIndex = 5; static const int kThisIndex = 6; V8_INLINE PropertyCallbackInfo(internal::Address* args) : args_(args) {} internal::Address* args_; }; using FunctionCallback = void (*)(const FunctionCallbackInfo<Value>& info); enum class ConstructorBehavior { kThrow, kAllow }; /** * A JavaScript function object (ECMA-262, 15.3). */ class V8_EXPORT Function : public Object { public: /** * Create a function in the current execution context * for a given FunctionCallback. */ static MaybeLocal<Function> New( Local<Context> context, FunctionCallback callback, Local<Value> data = Local<Value>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow, SideEffectType side_effect_type = SideEffectType::kHasSideEffect); V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance( Local<Context> context, int argc, Local<Value> argv[]) const; V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance( Local<Context> context) const { return NewInstance(context, 0, nullptr); } /** * When side effect checks are enabled, passing kHasNoSideEffect allows the * constructor to be invoked without throwing. Calls made within the * constructor are still checked. */ V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstanceWithSideEffectType( Local<Context> context, int argc, Local<Value> argv[], SideEffectType side_effect_type = SideEffectType::kHasSideEffect) const; V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); void SetName(Local<String> name); Local<Value> GetName() const; /** * Name inferred from variable or property assignment of this function. * Used to facilitate debugging and profiling of JavaScript code written * in an OO style, where many functions are anonymous but are assigned * to object properties. */ Local<Value> GetInferredName() const; /** * displayName if it is set, otherwise name if it is configured, otherwise * function name, otherwise inferred name. */ Local<Value> GetDebugName() const; /** * User-defined name assigned to the "displayName" property of this function. * Used to facilitate debugging and profiling of JavaScript code. */ V8_DEPRECATED( "Use v8::Object::Get() instead to look up \"displayName\". " "V8 and DevTools no longer use \"displayName\" in stack " "traces, but the standard \"name\" property. " "See http://crbug.com/1177685.") Local<Value> GetDisplayName() const; /** * Returns zero based line number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptLineNumber() const; /** * Returns zero based column number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptColumnNumber() const; /** * Returns scriptId. */ int ScriptId() const; /** * Returns the original function if this function is bound, else returns * v8::Undefined. */ Local<Value> GetBoundFunction() const; /** * Calls builtin Function.prototype.toString on this function. * This is different from Value::ToString() that may call a user-defined * toString() function, and different than Object::ObjectProtoToString() which * always serializes "[object Function]". */ V8_WARN_UNUSED_RESULT MaybeLocal<String> FunctionProtoToString( Local<Context> context); ScriptOrigin GetScriptOrigin() const; V8_INLINE static Function* Cast(Value* obj); static const int kLineOffsetNotFound; private: Function(); static void CheckCast(Value* obj); }; #ifndef V8_PROMISE_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_PROMISE_INTERNAL_FIELD_COUNT 0 #endif /** * An instance of the built-in Promise constructor (ES6 draft). */ class V8_EXPORT Promise : public Object { public: /** * State of the promise. Each value corresponds to one of the possible values * of the [[PromiseState]] field. */ enum PromiseState { kPending, kFulfilled, kRejected }; class V8_EXPORT Resolver : public Object { public: /** * Create a new resolver, along with an associated promise in pending state. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New( Local<Context> context); /** * Extract the associated promise. */ Local<Promise> GetPromise(); /** * Resolve/reject the associated promise with a given value. * Ignored if the promise is no longer pending. */ V8_WARN_UNUSED_RESULT Maybe<bool> Resolve(Local<Context> context, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> Reject(Local<Context> context, Local<Value> value); V8_INLINE static Resolver* Cast(Value* obj); private: Resolver(); static void CheckCast(Value* obj); }; /** * Register a resolution/rejection handler with a promise. * The handler is given the respective resolution/rejection value as * an argument. If the promise is already resolved/rejected, the handler is * invoked at the end of turn. */ V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context, Local<Function> handler); V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context, Local<Function> handler); V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context, Local<Function> on_fulfilled, Local<Function> on_rejected); /** * Returns true if the promise has at least one derived promise, and * therefore resolve/reject handlers (including default handler). */ bool HasHandler(); /** * Returns the content of the [[PromiseResult]] field. The Promise must not * be pending. */ Local<Value> Result(); /** * Returns the value of the [[PromiseState]] field. */ PromiseState State(); /** * Marks this promise as handled to avoid reporting unhandled rejections. */ void MarkAsHandled(); /** * Marks this promise as silent to prevent pausing the debugger when the * promise is rejected. */ void MarkAsSilent(); V8_INLINE static Promise* Cast(Value* obj); static const int kEmbedderFieldCount = V8_PROMISE_INTERNAL_FIELD_COUNT; private: Promise(); static void CheckCast(Value* obj); }; /** * An instance of a Property Descriptor, see Ecma-262 6.2.4. * * Properties in a descriptor are present or absent. If you do not set * `enumerable`, `configurable`, and `writable`, they are absent. If `value`, * `get`, or `set` are absent, but you must specify them in the constructor, use * empty handles. * * Accessors `get` and `set` must be callable or undefined if they are present. * * \note Only query properties if they are present, i.e., call `x()` only if * `has_x()` returns true. * * \code * // var desc = {writable: false} * v8::PropertyDescriptor d(Local<Value>()), false); * d.value(); // error, value not set * if (d.has_writable()) { * d.writable(); // false * } * * // var desc = {value: undefined} * v8::PropertyDescriptor d(v8::Undefined(isolate)); * * // var desc = {get: undefined} * v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>())); * \endcode */ class V8_EXPORT PropertyDescriptor { public: // GenericDescriptor PropertyDescriptor(); // DataDescriptor explicit PropertyDescriptor(Local<Value> value); // DataDescriptor with writable property PropertyDescriptor(Local<Value> value, bool writable); // AccessorDescriptor PropertyDescriptor(Local<Value> get, Local<Value> set); ~PropertyDescriptor(); Local<Value> value() const; bool has_value() const; Local<Value> get() const; bool has_get() const; Local<Value> set() const; bool has_set() const; void set_enumerable(bool enumerable); bool enumerable() const; bool has_enumerable() const; void set_configurable(bool configurable); bool configurable() const; bool has_configurable() const; bool writable() const; bool has_writable() const; struct PrivateData; PrivateData* get_private() const { return private_; } PropertyDescriptor(const PropertyDescriptor&) = delete; void operator=(const PropertyDescriptor&) = delete; private: PrivateData* private_; }; /** * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition, * 26.2.1). */ class V8_EXPORT Proxy : public Object { public: Local<Value> GetTarget(); Local<Value> GetHandler(); bool IsRevoked(); void Revoke(); /** * Creates a new Proxy for the target object. */ static MaybeLocal<Proxy> New(Local<Context> context, Local<Object> local_target, Local<Object> local_handler); V8_INLINE static Proxy* Cast(Value* obj); private: Proxy(); static void CheckCast(Value* obj); }; /** * Points to an unowned continous buffer holding a known number of elements. * * This is similar to std::span (under consideration for C++20), but does not * require advanced C++ support. In the (far) future, this may be replaced with * or aliased to std::span. * * To facilitate future migration, this class exposes a subset of the interface * implemented by std::span. */ template <typename T> class V8_EXPORT MemorySpan { public: /** The default constructor creates an empty span. */ constexpr MemorySpan() = default; constexpr MemorySpan(T* data, size_t size) : data_(data), size_(size) {} /** Returns a pointer to the beginning of the buffer. */ constexpr T* data() const { return data_; } /** Returns the number of elements that the buffer holds. */ constexpr size_t size() const { return size_; } private: T* data_ = nullptr; size_t size_ = 0; }; /** * An owned byte buffer with associated size. */ struct OwnedBuffer { std::unique_ptr<const uint8_t[]> buffer; size_t size = 0; OwnedBuffer(std::unique_ptr<const uint8_t[]> buffer, size_t size) : buffer(std::move(buffer)), size(size) {} OwnedBuffer() = default; }; // Wrapper around a compiled WebAssembly module, which is potentially shared by // different WasmModuleObjects. class V8_EXPORT CompiledWasmModule { public: /** * Serialize the compiled module. The serialized data does not include the * wire bytes. */ OwnedBuffer Serialize(); /** * Get the (wasm-encoded) wire bytes that were used to compile this module. */ MemorySpan<const uint8_t> GetWireBytesRef(); const std::string& source_url() const { return source_url_; } private: friend class WasmModuleObject; friend class WasmStreaming; explicit CompiledWasmModule(std::shared_ptr<internal::wasm::NativeModule>, const char* source_url, size_t url_length); const std::shared_ptr<internal::wasm::NativeModule> native_module_; const std::string source_url_; }; // An instance of WebAssembly.Memory. class V8_EXPORT WasmMemoryObject : public Object { public: WasmMemoryObject() = delete; /** * Returns underlying ArrayBuffer. */ Local<ArrayBuffer> Buffer(); V8_INLINE static WasmMemoryObject* Cast(Value* obj); private: static void CheckCast(Value* object); }; // An instance of WebAssembly.Module. class V8_EXPORT WasmModuleObject : public Object { public: WasmModuleObject() = delete; /** * Efficiently re-create a WasmModuleObject, without recompiling, from * a CompiledWasmModule. */ static MaybeLocal<WasmModuleObject> FromCompiledModule( Isolate* isolate, const CompiledWasmModule&); /** * Get the compiled module for this module object. The compiled module can be * shared by several module objects. */ CompiledWasmModule GetCompiledModule(); V8_INLINE static WasmModuleObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * The V8 interface for WebAssembly streaming compilation. When streaming * compilation is initiated, V8 passes a {WasmStreaming} object to the embedder * such that the embedder can pass the input bytes for streaming compilation to * V8. */ class V8_EXPORT WasmStreaming final { public: class WasmStreamingImpl; /** * Client to receive streaming event notifications. */ class Client { public: virtual ~Client() = default; /** * Passes the fully compiled module to the client. This can be used to * implement code caching. */ virtual void OnModuleCompiled(CompiledWasmModule compiled_module) = 0; }; explicit WasmStreaming(std::unique_ptr<WasmStreamingImpl> impl); ~WasmStreaming(); /** * Pass a new chunk of bytes to WebAssembly streaming compilation. * The buffer passed into {OnBytesReceived} is owned by the caller. */ void OnBytesReceived(const uint8_t* bytes, size_t size); /** * {Finish} should be called after all received bytes where passed to * {OnBytesReceived} to tell V8 that there will be no more bytes. {Finish} * does not have to be called after {Abort} has been called already. */ void Finish(); /** * Abort streaming compilation. If {exception} has a value, then the promise * associated with streaming compilation is rejected with that value. If * {exception} does not have value, the promise does not get rejected. */ void Abort(MaybeLocal<Value> exception); /** * Passes previously compiled module bytes. This must be called before * {OnBytesReceived}, {Finish}, or {Abort}. Returns true if the module bytes * can be used, false otherwise. The buffer passed via {bytes} and {size} * is owned by the caller. If {SetCompiledModuleBytes} returns true, the * buffer must remain valid until either {Finish} or {Abort} completes. */ bool SetCompiledModuleBytes(const uint8_t* bytes, size_t size); /** * Sets the client object that will receive streaming event notifications. * This must be called before {OnBytesReceived}, {Finish}, or {Abort}. */ void SetClient(std::shared_ptr<Client> client); /* * Sets the UTF-8 encoded source URL for the {Script} object. This must be * called before {Finish}. */ void SetUrl(const char* url, size_t length); /** * Unpacks a {WasmStreaming} object wrapped in a {Managed} for the embedder. * Since the embedder is on the other side of the API, it cannot unpack the * {Managed} itself. */ static std::shared_ptr<WasmStreaming> Unpack(Isolate* isolate, Local<Value> value); private: std::unique_ptr<WasmStreamingImpl> impl_; }; // TODO(mtrofin): when streaming compilation is done, we can rename this // to simply WasmModuleObjectBuilder class V8_EXPORT WasmModuleObjectBuilderStreaming final { public: explicit WasmModuleObjectBuilderStreaming(Isolate* isolate); /** * The buffer passed into OnBytesReceived is owned by the caller. */ void OnBytesReceived(const uint8_t*, size_t size); void Finish(); /** * Abort streaming compilation. If {exception} has a value, then the promise * associated with streaming compilation is rejected with that value. If * {exception} does not have value, the promise does not get rejected. */ void Abort(MaybeLocal<Value> exception); Local<Promise> GetPromise(); ~WasmModuleObjectBuilderStreaming() = default; private: WasmModuleObjectBuilderStreaming(const WasmModuleObjectBuilderStreaming&) = delete; WasmModuleObjectBuilderStreaming(WasmModuleObjectBuilderStreaming&&) = default; WasmModuleObjectBuilderStreaming& operator=( const WasmModuleObjectBuilderStreaming&) = delete; WasmModuleObjectBuilderStreaming& operator=( WasmModuleObjectBuilderStreaming&&) = default; Isolate* isolate_ = nullptr; #if V8_CC_MSVC /** * We don't need the static Copy API, so the default * NonCopyablePersistentTraits would be sufficient, however, * MSVC eagerly instantiates the Copy. * We ensure we don't use Copy, however, by compiling with the * defaults everywhere else. */ Persistent<Promise, CopyablePersistentTraits<Promise>> promise_; #else Persistent<Promise> promise_; #endif std::shared_ptr<internal::wasm::StreamingDecoder> streaming_decoder_; }; #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2 #endif enum class ArrayBufferCreationMode { kInternalized, kExternalized }; /** * A wrapper around the backing store (i.e. the raw memory) of an array buffer. * See a document linked in http://crbug.com/v8/9908 for more information. * * The allocation and destruction of backing stores is generally managed by * V8. Clients should always use standard C++ memory ownership types (i.e. * std::unique_ptr and std::shared_ptr) to manage lifetimes of backing stores * properly, since V8 internal objects may alias backing stores. * * This object does not keep the underlying |ArrayBuffer::Allocator| alive by * default. Use Isolate::CreateParams::array_buffer_allocator_shared when * creating the Isolate to make it hold a reference to the allocator itself. */ class V8_EXPORT BackingStore : public v8::internal::BackingStoreBase { public: ~BackingStore(); /** * Return a pointer to the beginning of the memory block for this backing * store. The pointer is only valid as long as this backing store object * lives. */ void* Data() const; /** * The length (in bytes) of this backing store. */ size_t ByteLength() const; /** * Indicates whether the backing store was created for an ArrayBuffer or * a SharedArrayBuffer. */ bool IsShared() const; /** * Prevent implicit instantiation of operator delete with size_t argument. * The size_t argument would be incorrect because ptr points to the * internal BackingStore object. */ void operator delete(void* ptr) { ::operator delete(ptr); } /** * Wrapper around ArrayBuffer::Allocator::Reallocate that preserves IsShared. * Assumes that the backing_store was allocated by the ArrayBuffer allocator * of the given isolate. */ static std::unique_ptr<BackingStore> Reallocate( v8::Isolate* isolate, std::unique_ptr<BackingStore> backing_store, size_t byte_length); /** * This callback is used only if the memory block for a BackingStore cannot be * allocated with an ArrayBuffer::Allocator. In such cases the destructor of * the BackingStore invokes the callback to free the memory block. */ using DeleterCallback = void (*)(void* data, size_t length, void* deleter_data); /** * If the memory block of a BackingStore is static or is managed manually, * then this empty deleter along with nullptr deleter_data can be passed to * ArrayBuffer::NewBackingStore to indicate that. * * The manually managed case should be used with caution and only when it * is guaranteed that the memory block freeing happens after detaching its * ArrayBuffer. */ static void EmptyDeleter(void* data, size_t length, void* deleter_data); private: /** * See [Shared]ArrayBuffer::GetBackingStore and * [Shared]ArrayBuffer::NewBackingStore. */ BackingStore(); }; #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS) // Use v8::BackingStore::DeleterCallback instead. using BackingStoreDeleterCallback = void (*)(void* data, size_t length, void* deleter_data); #endif /** * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5). */ class V8_EXPORT ArrayBuffer : public Object { public: /** * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory. * The allocator is a global V8 setting. It has to be set via * Isolate::CreateParams. * * Memory allocated through this allocator by V8 is accounted for as external * memory by V8. Note that V8 keeps track of the memory for all internalized * |ArrayBuffer|s. Responsibility for tracking external memory (using * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the * embedder upon externalization and taken over upon internalization (creating * an internalized buffer from an existing buffer). * * Note that it is unsafe to call back into V8 from any of the allocator * functions. */ class V8_EXPORT Allocator { public: virtual ~Allocator() = default; /** * Allocate |length| bytes. Return nullptr if allocation is not successful. * Memory should be initialized to zeroes. */ virtual void* Allocate(size_t length) = 0; /** * Allocate |length| bytes. Return nullptr if allocation is not successful. * Memory does not have to be initialized. */ virtual void* AllocateUninitialized(size_t length) = 0; /** * Free the memory block of size |length|, pointed to by |data|. * That memory is guaranteed to be previously allocated by |Allocate|. */ virtual void Free(void* data, size_t length) = 0; /** * Reallocate the memory block of size |old_length| to a memory block of * size |new_length| by expanding, contracting, or copying the existing * memory block. If |new_length| > |old_length|, then the new part of * the memory must be initialized to zeros. Return nullptr if reallocation * is not successful. * * The caller guarantees that the memory block was previously allocated * using Allocate or AllocateUninitialized. * * The default implementation allocates a new block and copies data. */ virtual void* Reallocate(void* data, size_t old_length, size_t new_length); /** * ArrayBuffer allocation mode. kNormal is a malloc/free style allocation, * while kReservation is for larger allocations with the ability to set * access permissions. */ enum class AllocationMode { kNormal, kReservation }; /** * malloc/free based convenience allocator. * * Caller takes ownership, i.e. the returned object needs to be freed using * |delete allocator| once it is no longer in use. */ static Allocator* NewDefaultAllocator(); }; /** * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer| * returns an instance of this class, populated, with a pointer to data * and byte length. * * The Data pointer of ArrayBuffer::Contents must be freed using the provided * deleter, which will call ArrayBuffer::Allocator::Free if the buffer * was allocated with ArraryBuffer::Allocator::Allocate. */ class V8_EXPORT Contents { // NOLINT public: using DeleterCallback = void (*)(void* buffer, size_t length, void* info); Contents() : data_(nullptr), byte_length_(0), allocation_base_(nullptr), allocation_length_(0), allocation_mode_(Allocator::AllocationMode::kNormal), deleter_(nullptr), deleter_data_(nullptr) {} void* AllocationBase() const { return allocation_base_; } size_t AllocationLength() const { return allocation_length_; } Allocator::AllocationMode AllocationMode() const { return allocation_mode_; } void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; } DeleterCallback Deleter() const { return deleter_; } void* DeleterData() const { return deleter_data_; } private: Contents(void* data, size_t byte_length, void* allocation_base, size_t allocation_length, Allocator::AllocationMode allocation_mode, DeleterCallback deleter, void* deleter_data); void* data_; size_t byte_length_; void* allocation_base_; size_t allocation_length_; Allocator::AllocationMode allocation_mode_; DeleterCallback deleter_; void* deleter_data_; friend class ArrayBuffer; }; /** * Data length in bytes. */ size_t ByteLength() const; /** * Create a new ArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created ArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length); /** * Create a new ArrayBuffer over an existing memory block. * The created array buffer is by default immediately in externalized state. * In externalized state, the memory block will not be reclaimed when a * created ArrayBuffer is garbage-collected. * In internalized state, the memory block will be released using * |Allocator::Free| once all ArrayBuffers referencing it are collected by * the garbage collector. */ V8_DEPRECATED( "Use the version that takes a BackingStore. " "See http://crbug.com/v8/9908.") static Local<ArrayBuffer> New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Create a new ArrayBuffer with an existing backing store. * The created array keeps a reference to the backing store until the array * is garbage collected. Note that the IsExternal bit does not affect this * reference from the array to the backing store. * * In future IsExternal bit will be removed. Until then the bit is set as * follows. If the backing store does not own the underlying buffer, then * the array is created in externalized state. Otherwise, the array is created * in internalized state. In the latter case the array can be transitioned * to the externalized state using Externalize(backing_store). */ static Local<ArrayBuffer> New(Isolate* isolate, std::shared_ptr<BackingStore> backing_store); /** * Returns a new standalone BackingStore that is allocated using the array * buffer allocator of the isolate. The result can be later passed to * ArrayBuffer::New. * * If the allocator returns nullptr, then the function may cause GCs in the * given isolate and re-try the allocation. If GCs do not help, then the * function will crash with an out-of-memory error. */ static std::unique_ptr<BackingStore> NewBackingStore(Isolate* isolate, size_t byte_length); /** * Returns a new standalone BackingStore that takes over the ownership of * the given buffer. The destructor of the BackingStore invokes the given * deleter callback. * * The result can be later passed to ArrayBuffer::New. The raw pointer * to the buffer must not be passed again to any V8 API function. */ static std::unique_ptr<BackingStore> NewBackingStore( void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter, void* deleter_data); /** * Returns true if ArrayBuffer is externalized, that is, does not * own its memory block. */ V8_DEPRECATED( "With v8::BackingStore externalized ArrayBuffers are " "the same as ordinary ArrayBuffers. See http://crbug.com/v8/9908.") bool IsExternal() const; /** * Returns true if this ArrayBuffer may be detached. */ bool IsDetachable() const; /** * Detaches this ArrayBuffer and all its views (typed arrays). * Detaching sets the byte length of the buffer and all typed arrays to zero, * preventing JavaScript from ever accessing underlying backing store. * ArrayBuffer should have been externalized and must be detachable. */ void Detach(); /** * Make this ArrayBuffer external. The pointer to underlying memory block * and byte length are returned as |Contents| structure. After ArrayBuffer * had been externalized, it does no longer own the memory block. The caller * should take steps to free memory when it is no longer needed. * * The Data pointer of ArrayBuffer::Contents must be freed using the provided * deleter, which will call ArrayBuffer::Allocator::Free if the buffer * was allocated with ArrayBuffer::Allocator::Allocate. */ V8_DEPRECATED("Use GetBackingStore or Detach. See http://crbug.com/v8/9908.") Contents Externalize(); /** * Marks this ArrayBuffer external given a witness that the embedder * has fetched the backing store using the new GetBackingStore() function. * * With the new lifetime management of backing stores there is no need for * externalizing, so this function exists only to make the transition easier. */ V8_DEPRECATED("This will be removed together with IsExternal.") void Externalize(const std::shared_ptr<BackingStore>& backing_store); /** * Get a pointer to the ArrayBuffer's underlying memory block without * externalizing it. If the ArrayBuffer is not externalized, this pointer * will become invalid as soon as the ArrayBuffer gets garbage collected. * * The embedder should make sure to hold a strong reference to the * ArrayBuffer while accessing this pointer. */ V8_DEPRECATED("Use GetBackingStore. See http://crbug.com/v8/9908.") Contents GetContents(); /** * Get a shared pointer to the backing store of this array buffer. This * pointer coordinates the lifetime management of the internal storage * with any live ArrayBuffers on the heap, even across isolates. The embedder * should not attempt to manage lifetime of the storage through other means. * * This function replaces both Externalize() and GetContents(). */ std::shared_ptr<BackingStore> GetBackingStore(); V8_INLINE static ArrayBuffer* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; static const int kEmbedderFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; private: ArrayBuffer(); static void CheckCast(Value* obj); Contents GetContents(bool externalize); }; #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2 #endif /** * A base class for an instance of one of "views" over ArrayBuffer, * including TypedArrays and DataView (ES6 draft 15.13). */ class V8_EXPORT ArrayBufferView : public Object { public: /** * Returns underlying ArrayBuffer. */ Local<ArrayBuffer> Buffer(); /** * Byte offset in |Buffer|. */ size_t ByteOffset(); /** * Size of a view in bytes. */ size_t ByteLength(); /** * Copy the contents of the ArrayBufferView's buffer to an embedder defined * memory without additional overhead that calling ArrayBufferView::Buffer * might incur. * * Will write at most min(|byte_length|, ByteLength) bytes starting at * ByteOffset of the underlying buffer to the memory starting at |dest|. * Returns the number of bytes actually written. */ size_t CopyContents(void* dest, size_t byte_length); /** * Returns true if ArrayBufferView's backing ArrayBuffer has already been * allocated. */ bool HasBuffer() const; V8_INLINE static ArrayBufferView* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT; static const int kEmbedderFieldCount = V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT; private: ArrayBufferView(); static void CheckCast(Value* obj); }; /** * A base class for an instance of TypedArray series of constructors * (ES6 draft 15.13.6). */ class V8_EXPORT TypedArray : public ArrayBufferView { public: /* * The largest typed array size that can be constructed using New. */ static constexpr size_t kMaxLength = internal::kApiSystemPointerSize == 4 ? internal::kSmiMaxValue : static_cast<size_t>(uint64_t{1} << 32); /** * Number of elements in this typed array * (e.g. for Int16Array, |ByteLength|/2). */ size_t Length(); V8_INLINE static TypedArray* Cast(Value* obj); private: TypedArray(); static void CheckCast(Value* obj); }; /** * An instance of Uint8Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint8Array : public TypedArray { public: static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8Array* Cast(Value* obj); private: Uint8Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint8ClampedArray : public TypedArray { public: static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint8ClampedArray> New( Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8ClampedArray* Cast(Value* obj); private: Uint8ClampedArray(); static void CheckCast(Value* obj); }; /** * An instance of Int8Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Int8Array : public TypedArray { public: static Local<Int8Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int8Array* Cast(Value* obj); private: Int8Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint16Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint16Array : public TypedArray { public: static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint16Array* Cast(Value* obj); private: Uint16Array(); static void CheckCast(Value* obj); }; /** * An instance of Int16Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Int16Array : public TypedArray { public: static Local<Int16Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int16Array* Cast(Value* obj); private: Int16Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint32Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint32Array : public TypedArray { public: static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint32Array* Cast(Value* obj); private: Uint32Array(); static void CheckCast(Value* obj); }; /** * An instance of Int32Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Int32Array : public TypedArray { public: static Local<Int32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int32Array* Cast(Value* obj); private: Int32Array(); static void CheckCast(Value* obj); }; /** * An instance of Float32Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Float32Array : public TypedArray { public: static Local<Float32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float32Array* Cast(Value* obj); private: Float32Array(); static void CheckCast(Value* obj); }; /** * An instance of Float64Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Float64Array : public TypedArray { public: static Local<Float64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float64Array* Cast(Value* obj); private: Float64Array(); static void CheckCast(Value* obj); }; /** * An instance of BigInt64Array constructor. */ class V8_EXPORT BigInt64Array : public TypedArray { public: static Local<BigInt64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<BigInt64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static BigInt64Array* Cast(Value* obj); private: BigInt64Array(); static void CheckCast(Value* obj); }; /** * An instance of BigUint64Array constructor. */ class V8_EXPORT BigUint64Array : public TypedArray { public: static Local<BigUint64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<BigUint64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static BigUint64Array* Cast(Value* obj); private: BigUint64Array(); static void CheckCast(Value* obj); }; /** * An instance of DataView constructor (ES6 draft 15.13.7). */ class V8_EXPORT DataView : public ArrayBufferView { public: static Local<DataView> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static DataView* Cast(Value* obj); private: DataView(); static void CheckCast(Value* obj); }; /** * An instance of the built-in SharedArrayBuffer constructor. */ class V8_EXPORT SharedArrayBuffer : public Object { public: /** * The contents of an |SharedArrayBuffer|. Externalization of * |SharedArrayBuffer| returns an instance of this class, populated, with a * pointer to data and byte length. * * The Data pointer of ArrayBuffer::Contents must be freed using the provided * deleter, which will call ArrayBuffer::Allocator::Free if the buffer * was allocated with ArraryBuffer::Allocator::Allocate. */ class V8_EXPORT Contents { // NOLINT public: using Allocator = v8::ArrayBuffer::Allocator; using DeleterCallback = void (*)(void* buffer, size_t length, void* info); Contents() : data_(nullptr), byte_length_(0), allocation_base_(nullptr), allocation_length_(0), allocation_mode_(Allocator::AllocationMode::kNormal), deleter_(nullptr), deleter_data_(nullptr) {} void* AllocationBase() const { return allocation_base_; } size_t AllocationLength() const { return allocation_length_; } Allocator::AllocationMode AllocationMode() const { return allocation_mode_; } void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; } DeleterCallback Deleter() const { return deleter_; } void* DeleterData() const { return deleter_data_; } private: Contents(void* data, size_t byte_length, void* allocation_base, size_t allocation_length, Allocator::AllocationMode allocation_mode, DeleterCallback deleter, void* deleter_data); void* data_; size_t byte_length_; void* allocation_base_; size_t allocation_length_; Allocator::AllocationMode allocation_mode_; DeleterCallback deleter_; void* deleter_data_; friend class SharedArrayBuffer; }; /** * Data length in bytes. */ size_t ByteLength() const; /** * Create a new SharedArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created SharedArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length); /** * Create a new SharedArrayBuffer over an existing memory block. The created * array buffer is immediately in externalized state unless otherwise * specified. The memory block will not be reclaimed when a created * SharedArrayBuffer is garbage-collected. */ V8_DEPRECATED( "Use the version that takes a BackingStore. " "See http://crbug.com/v8/9908.") static Local<SharedArrayBuffer> New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Create a new SharedArrayBuffer with an existing backing store. * The created array keeps a reference to the backing store until the array * is garbage collected. Note that the IsExternal bit does not affect this * reference from the array to the backing store. * * In future IsExternal bit will be removed. Until then the bit is set as * follows. If the backing store does not own the underlying buffer, then * the array is created in externalized state. Otherwise, the array is created * in internalized state. In the latter case the array can be transitioned * to the externalized state using Externalize(backing_store). */ static Local<SharedArrayBuffer> New( Isolate* isolate, std::shared_ptr<BackingStore> backing_store); /** * Returns a new standalone BackingStore that is allocated using the array * buffer allocator of the isolate. The result can be later passed to * SharedArrayBuffer::New. * * If the allocator returns nullptr, then the function may cause GCs in the * given isolate and re-try the allocation. If GCs do not help, then the * function will crash with an out-of-memory error. */ static std::unique_ptr<BackingStore> NewBackingStore(Isolate* isolate, size_t byte_length); /** * Returns a new standalone BackingStore that takes over the ownership of * the given buffer. The destructor of the BackingStore invokes the given * deleter callback. * * The result can be later passed to SharedArrayBuffer::New. The raw pointer * to the buffer must not be passed again to any V8 functions. */ static std::unique_ptr<BackingStore> NewBackingStore( void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter, void* deleter_data); /** * Create a new SharedArrayBuffer over an existing memory block. Propagate * flags to indicate whether the underlying buffer can be grown. */ V8_DEPRECATED( "Use the version that takes a BackingStore. " "See http://crbug.com/v8/9908.") static Local<SharedArrayBuffer> New( Isolate* isolate, const SharedArrayBuffer::Contents&, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Returns true if SharedArrayBuffer is externalized, that is, does not * own its memory block. */ V8_DEPRECATED( "With v8::BackingStore externalized SharedArrayBuffers are the same " "as ordinary SharedArrayBuffers. See http://crbug.com/v8/9908.") bool IsExternal() const; /** * Make this SharedArrayBuffer external. The pointer to underlying memory * block and byte length are returned as |Contents| structure. After * SharedArrayBuffer had been externalized, it does no longer own the memory * block. The caller should take steps to free memory when it is no longer * needed. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. * */ V8_DEPRECATED("Use GetBackingStore or Detach. See http://crbug.com/v8/9908.") Contents Externalize(); /** * Marks this SharedArrayBuffer external given a witness that the embedder * has fetched the backing store using the new GetBackingStore() function. * * With the new lifetime management of backing stores there is no need for * externalizing, so this function exists only to make the transition easier. */ V8_DEPRECATED("This will be removed together with IsExternal.") void Externalize(const std::shared_ptr<BackingStore>& backing_store); /** * Get a pointer to the ArrayBuffer's underlying memory block without * externalizing it. If the ArrayBuffer is not externalized, this pointer * will become invalid as soon as the ArrayBuffer became garbage collected. * * The embedder should make sure to hold a strong reference to the * ArrayBuffer while accessing this pointer. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. */ V8_DEPRECATED("Use GetBackingStore. See http://crbug.com/v8/9908.") Contents GetContents(); /** * Get a shared pointer to the backing store of this array buffer. This * pointer coordinates the lifetime management of the internal storage * with any live ArrayBuffers on the heap, even across isolates. The embedder * should not attempt to manage lifetime of the storage through other means. * * This function replaces both Externalize() and GetContents(). */ std::shared_ptr<BackingStore> GetBackingStore(); V8_INLINE static SharedArrayBuffer* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; private: SharedArrayBuffer(); static void CheckCast(Value* obj); Contents GetContents(bool externalize); }; /** * An instance of the built-in Date constructor (ECMA-262, 15.9). */ class V8_EXPORT Date : public Object { public: static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context, double time); /** * A specialization of Value::NumberValue that is more efficient * because we know the structure of this object. */ double ValueOf() const; V8_INLINE static Date* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A Number object (ECMA-262, 4.3.21). */ class V8_EXPORT NumberObject : public Object { public: static Local<Value> New(Isolate* isolate, double value); double ValueOf() const; V8_INLINE static NumberObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A BigInt object (https://tc39.github.io/proposal-bigint) */ class V8_EXPORT BigIntObject : public Object { public: static Local<Value> New(Isolate* isolate, int64_t value); Local<BigInt> ValueOf() const; V8_INLINE static BigIntObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A Boolean object (ECMA-262, 4.3.15). */ class V8_EXPORT BooleanObject : public Object { public: static Local<Value> New(Isolate* isolate, bool value); bool ValueOf() const; V8_INLINE static BooleanObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A String object (ECMA-262, 4.3.18). */ class V8_EXPORT StringObject : public Object { public: static Local<Value> New(Isolate* isolate, Local<String> value); Local<String> ValueOf() const; V8_INLINE static StringObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A Symbol object (ECMA-262 edition 6). */ class V8_EXPORT SymbolObject : public Object { public: static Local<Value> New(Isolate* isolate, Local<Symbol> value); Local<Symbol> ValueOf() const; V8_INLINE static SymbolObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * An instance of the built-in RegExp constructor (ECMA-262, 15.10). */ class V8_EXPORT RegExp : public Object { public: /** * Regular expression flag bits. They can be or'ed to enable a set * of flags. * The kLinear value ('l') is experimental and can only be used with * --enable-experimental-regexp-engine. RegExps with kLinear flag are * guaranteed to be executed in asymptotic linear time wrt. the length of * the subject string. */ enum Flags { kNone = 0, kGlobal = 1 << 0, kIgnoreCase = 1 << 1, kMultiline = 1 << 2, kSticky = 1 << 3, kUnicode = 1 << 4, kDotAll = 1 << 5, kLinear = 1 << 6, kHasIndices = 1 << 7, }; static constexpr int kFlagCount = 8; /** * Creates a regular expression from the given pattern string and * the flags bit field. May throw a JavaScript exception as * described in ECMA-262, 15.10.4.1. * * For example, * RegExp::New(v8::String::New("foo"), * static_cast<RegExp::Flags>(kGlobal | kMultiline)) * is equivalent to evaluating "/foo/gm". */ static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context, Local<String> pattern, Flags flags); /** * Like New, but additionally specifies a backtrack limit. If the number of * backtracks done in one Exec call hits the limit, a match failure is * immediately returned. */ static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> NewWithBacktrackLimit( Local<Context> context, Local<String> pattern, Flags flags, uint32_t backtrack_limit); /** * Executes the current RegExp instance on the given subject string. * Equivalent to RegExp.prototype.exec as described in * * https://tc39.es/ecma262/#sec-regexp.prototype.exec * * On success, an Array containing the matched strings is returned. On * failure, returns Null. * * Note: modifies global context state, accessible e.g. through RegExp.input. */ V8_WARN_UNUSED_RESULT MaybeLocal<Object> Exec(Local<Context> context, Local<String> subject); /** * Returns the value of the source property: a string representing * the regular expression. */ Local<String> GetSource() const; /** * Returns the flags bit field. */ Flags GetFlags() const; V8_INLINE static RegExp* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A JavaScript value that wraps a C++ void*. This type of value is mainly used * to associate C++ data structures with JavaScript objects. */ class V8_EXPORT External : public Value { public: static Local<External> New(Isolate* isolate, void* value); V8_INLINE static External* Cast(Value* obj); void* Value() const; private: static void CheckCast(v8::Value* obj); }; #define V8_INTRINSICS_LIST(F) \ F(ArrayProto_entries, array_entries_iterator) \ F(ArrayProto_forEach, array_for_each_iterator) \ F(ArrayProto_keys, array_keys_iterator) \ F(ArrayProto_values, array_values_iterator) \ F(AsyncIteratorPrototype, initial_async_iterator_prototype) \ F(ErrorPrototype, initial_error_prototype) \ F(IteratorPrototype, initial_iterator_prototype) \ F(ObjProto_valueOf, object_value_of_function) enum Intrinsic { #define V8_DECL_INTRINSIC(name, iname) k##name, V8_INTRINSICS_LIST(V8_DECL_INTRINSIC) #undef V8_DECL_INTRINSIC }; // --- Templates --- /** * The superclass of object and function templates. */ class V8_EXPORT Template : public Data { public: /** * Adds a property to each instance created by this template. * * The property must be defined either as a primitive value, or a template. */ void Set(Local<Name> name, Local<Data> value, PropertyAttribute attributes = None); void SetPrivate(Local<Private> name, Local<Data> value, PropertyAttribute attributes = None); V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value); void SetAccessorProperty( Local<Name> name, Local<FunctionTemplate> getter = Local<FunctionTemplate>(), Local<FunctionTemplate> setter = Local<FunctionTemplate>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); /** * Whenever the property with the given name is accessed on objects * created from this Template the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetNativeDataProperty( Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = nullptr, Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); void SetNativeDataProperty( Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = nullptr, Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); /** * Like SetNativeDataProperty, but V8 will replace the native data property * with a real data property on first access. */ void SetLazyDataProperty( Local<Name> name, AccessorNameGetterCallback getter, Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); /** * During template instantiation, sets the value with the intrinsic property * from the correct context. */ void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic, PropertyAttribute attribute = None); private: Template(); friend class ObjectTemplate; friend class FunctionTemplate; }; // TODO(dcarney): Replace GenericNamedPropertyFooCallback with just // NamedPropertyFooCallback. /** * Interceptor for get requests on an object. * * Use `info.GetReturnValue().Set()` to set the return value of the * intercepted get request. * * \param property The name of the property for which the request was * intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict`' mode. * See `PropertyCallbackInfo`. * * \code * void GetterCallback( * Local<Name> name, * const v8::PropertyCallbackInfo<v8::Value>& info) { * info.GetReturnValue().Set(v8_num(42)); * } * * v8::Local<v8::FunctionTemplate> templ = * v8::FunctionTemplate::New(isolate); * templ->InstanceTemplate()->SetHandler( * v8::NamedPropertyHandlerConfiguration(GetterCallback)); * LocalContext env; * env->Global() * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local()) * .ToLocalChecked() * ->NewInstance(env.local()) * .ToLocalChecked()) * .FromJust(); * v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a"); * CHECK(v8_num(42)->Equals(env.local(), result).FromJust()); * \endcode * * See also `ObjectTemplate::SetHandler`. */ using GenericNamedPropertyGetterCallback = void (*)(Local<Name> property, const PropertyCallbackInfo<Value>& info); /** * Interceptor for set requests on an object. * * Use `info.GetReturnValue()` to indicate whether the request was intercepted * or not. If the setter successfully intercepts the request, i.e., if the * request should not be further executed, call * `info.GetReturnValue().Set(value)`. If the setter * did not intercept the request, i.e., if the request should be handled as * if no interceptor is present, do not not call `Set()`. * * \param property The name of the property for which the request was * intercepted. * \param value The value which the property will have if the request * is not intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * See also * `ObjectTemplate::SetHandler.` */ using GenericNamedPropertySetterCallback = void (*)(Local<Name> property, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * Intercepts all requests that query the attributes of the * property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and * defineProperty(). * * Use `info.GetReturnValue().Set(value)` to set the property attributes. The * value is an integer encoding a `v8::PropertyAttribute`. * * \param property The name of the property for which the request was * intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * \note Some functions query the property attributes internally, even though * they do not return the attributes. For example, `hasOwnProperty()` can * trigger this interceptor depending on the state of the object. * * See also * `ObjectTemplate::SetHandler.` */ using GenericNamedPropertyQueryCallback = void (*)(Local<Name> property, const PropertyCallbackInfo<Integer>& info); /** * Interceptor for delete requests on an object. * * Use `info.GetReturnValue()` to indicate whether the request was intercepted * or not. If the deleter successfully intercepts the request, i.e., if the * request should not be further executed, call * `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is * used as the return value of `delete`. * * \param property The name of the property for which the request was * intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * \note If you need to mimic the behavior of `delete`, i.e., throw in strict * mode instead of returning false, use `info.ShouldThrowOnError()` to determine * if you are in strict mode. * * See also `ObjectTemplate::SetHandler.` */ using GenericNamedPropertyDeleterCallback = void (*)(Local<Name> property, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the names of the properties the named * property getter intercepts. * * Note: The values in the array must be of type v8::Name. */ using GenericNamedPropertyEnumeratorCallback = void (*)(const PropertyCallbackInfo<Array>& info); /** * Interceptor for defineProperty requests on an object. * * Use `info.GetReturnValue()` to indicate whether the request was intercepted * or not. If the definer successfully intercepts the request, i.e., if the * request should not be further executed, call * `info.GetReturnValue().Set(value)`. If the definer * did not intercept the request, i.e., if the request should be handled as * if no interceptor is present, do not not call `Set()`. * * \param property The name of the property for which the request was * intercepted. * \param desc The property descriptor which is used to define the * property if the request is not intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * See also `ObjectTemplate::SetHandler`. */ using GenericNamedPropertyDefinerCallback = void (*)(Local<Name> property, const PropertyDescriptor& desc, const PropertyCallbackInfo<Value>& info); /** * Interceptor for getOwnPropertyDescriptor requests on an object. * * Use `info.GetReturnValue().Set()` to set the return value of the * intercepted request. The return value must be an object that * can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from * `v8::Object::getOwnPropertyDescriptor`. * * \param property The name of the property for which the request was * intercepted. * \info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * \note If GetOwnPropertyDescriptor is intercepted, it will * always return true, i.e., indicate that the property was found. * * See also `ObjectTemplate::SetHandler`. */ using GenericNamedPropertyDescriptorCallback = void (*)(Local<Name> property, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertyGetterCallback`. */ using IndexedPropertyGetterCallback = void (*)(uint32_t index, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertySetterCallback`. */ using IndexedPropertySetterCallback = void (*)(uint32_t index, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertyQueryCallback`. */ using IndexedPropertyQueryCallback = void (*)(uint32_t index, const PropertyCallbackInfo<Integer>& info); /** * See `v8::GenericNamedPropertyDeleterCallback`. */ using IndexedPropertyDeleterCallback = void (*)(uint32_t index, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the indices of the properties the indexed * property getter intercepts. * * Note: The values in the array must be uint32_t. */ using IndexedPropertyEnumeratorCallback = void (*)(const PropertyCallbackInfo<Array>& info); /** * See `v8::GenericNamedPropertyDefinerCallback`. */ using IndexedPropertyDefinerCallback = void (*)(uint32_t index, const PropertyDescriptor& desc, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertyDescriptorCallback`. */ using IndexedPropertyDescriptorCallback = void (*)(uint32_t index, const PropertyCallbackInfo<Value>& info); /** * Access type specification. */ enum AccessType { ACCESS_GET, ACCESS_SET, ACCESS_HAS, ACCESS_DELETE, ACCESS_KEYS }; /** * Returns true if the given context should be allowed to access the given * object. */ using AccessCheckCallback = bool (*)(Local<Context> accessing_context, Local<Object> accessed_object, Local<Value> data); /** * A FunctionTemplate is used to create functions at runtime. There * can only be one function created from a FunctionTemplate in a * context. The lifetime of the created function is equal to the * lifetime of the context. So in case the embedder needs to create * temporary functions that can be collected using Scripts is * preferred. * * Any modification of a FunctionTemplate after first instantiation will trigger * a crash. * * A FunctionTemplate can have properties, these properties are added to the * function object when it is created. * * A FunctionTemplate has a corresponding instance template which is * used to create object instances when the function is used as a * constructor. Properties added to the instance template are added to * each object instance. * * A FunctionTemplate can have a prototype template. The prototype template * is used to create the prototype object of the function. * * The following example shows how to use a FunctionTemplate: * * \code * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate); * t->Set(isolate, "func_property", v8::Number::New(isolate, 1)); * * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); * proto_t->Set(isolate, * "proto_method", * v8::FunctionTemplate::New(isolate, InvokeCallback)); * proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2)); * * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); * instance_t->SetAccessor( String::NewFromUtf8Literal(isolate, "instance_accessor"), * InstanceAccessorCallback); * instance_t->SetHandler( * NamedPropertyHandlerConfiguration(PropertyHandlerCallback)); * instance_t->Set(String::NewFromUtf8Literal(isolate, "instance_property"), * Number::New(isolate, 3)); * * v8::Local<v8::Function> function = t->GetFunction(); * v8::Local<v8::Object> instance = function->NewInstance(); * \endcode * * Let's use "function" as the JS variable name of the function object * and "instance" for the instance object created above. The function * and the instance will have the following properties: * * \code * func_property in function == true; * function.func_property == 1; * * function.prototype.proto_method() invokes 'InvokeCallback' * function.prototype.proto_const == 2; * * instance instanceof function == true; * instance.instance_accessor calls 'InstanceAccessorCallback' * instance.instance_property == 3; * \endcode * * A FunctionTemplate can inherit from another one by calling the * FunctionTemplate::Inherit method. The following graph illustrates * the semantics of inheritance: * * \code * FunctionTemplate Parent -> Parent() . prototype -> { } * ^ ^ * | Inherit(Parent) | .__proto__ * | | * FunctionTemplate Child -> Child() . prototype -> { } * \endcode * * A FunctionTemplate 'Child' inherits from 'Parent', the prototype * object of the Child() function has __proto__ pointing to the * Parent() function's prototype object. An instance of the Child * function has all properties on Parent's instance templates. * * Let Parent be the FunctionTemplate initialized in the previous * section and create a Child FunctionTemplate by: * * \code * Local<FunctionTemplate> parent = t; * Local<FunctionTemplate> child = FunctionTemplate::New(); * child->Inherit(parent); * * Local<Function> child_function = child->GetFunction(); * Local<Object> child_instance = child_function->NewInstance(); * \endcode * * The Child function and Child instance will have the following * properties: * * \code * child_func.prototype.__proto__ == function.prototype; * child_instance.instance_accessor calls 'InstanceAccessorCallback' * child_instance.instance_property == 3; * \endcode * * The additional 'c_function' parameter refers to a fast API call, which * must not trigger GC or JavaScript execution, or call into V8 in other * ways. For more information how to define them, see * include/v8-fast-api-calls.h. Please note that this feature is still * experimental. */ class V8_EXPORT FunctionTemplate : public Template { public: /** Creates a function template.*/ static Local<FunctionTemplate> New( Isolate* isolate, FunctionCallback callback = nullptr, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow, SideEffectType side_effect_type = SideEffectType::kHasSideEffect, const CFunction* c_function = nullptr); /** Creates a function template for multiple overloaded fast API calls.*/ static Local<FunctionTemplate> NewWithCFunctionOverloads( Isolate* isolate, FunctionCallback callback = nullptr, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow, SideEffectType side_effect_type = SideEffectType::kHasSideEffect, const MemorySpan<const CFunction>& c_function_overloads = {}); /** * Creates a function template backed/cached by a private property. */ static Local<FunctionTemplate> NewWithCache( Isolate* isolate, FunctionCallback callback, Local<Private> cache_property, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0, SideEffectType side_effect_type = SideEffectType::kHasSideEffect); /** Returns the unique function instance in the current execution context.*/ V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction( Local<Context> context); /** * Similar to Context::NewRemoteContext, this creates an instance that * isn't backed by an actual object. * * The InstanceTemplate of this FunctionTemplate must have access checks with * handlers installed. */ V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance(); /** * Set the call-handler callback for a FunctionTemplate. This * callback is called whenever the function created from this * FunctionTemplate is called. The 'c_function' represents a fast * API call, see the comment above the class declaration. */ void SetCallHandler( FunctionCallback callback, Local<Value> data = Local<Value>(), SideEffectType side_effect_type = SideEffectType::kHasSideEffect, const CFunction* c_function = nullptr); /** * Set the call-handler callback for a FunctionTemplate. This * callback is called whenever the function created from this * FunctionTemplate is called. The 'c_function' represents a fast * API call, see the comment above the class declaration. */ void SetCallHandlerV8_92( FunctionCallback callback, Local<Value> data = Local<Value>(), SideEffectType side_effect_type = SideEffectType::kHasSideEffect, const MemorySpan<const CFunction>& c_function_overloads = {}); /** Set the predefined length property for the FunctionTemplate. */ void SetLength(int length); /** Get the InstanceTemplate. */ Local<ObjectTemplate> InstanceTemplate(); /** * Causes the function template to inherit from a parent function template. * This means the function's prototype.__proto__ is set to the parent * function's prototype. **/ void Inherit(Local<FunctionTemplate> parent); /** * A PrototypeTemplate is the template used to create the prototype object * of the function created by this template. */ Local<ObjectTemplate> PrototypeTemplate(); /** * A PrototypeProviderTemplate is another function template whose prototype * property is used for this template. This is mutually exclusive with setting * a prototype template indirectly by calling PrototypeTemplate() or using * Inherit(). **/ void SetPrototypeProviderTemplate(Local<FunctionTemplate> prototype_provider); /** * Set the class name of the FunctionTemplate. This is used for * printing objects created with the function created from the * FunctionTemplate as its constructor. */ void SetClassName(Local<String> name); /** * When set to true, no access check will be performed on the receiver of a * function call. Currently defaults to true, but this is subject to change. */ void SetAcceptAnyReceiver(bool value); /** * Sets the ReadOnly flag in the attributes of the 'prototype' property * of functions created from this FunctionTemplate to true. */ void ReadOnlyPrototype(); /** * Removes the prototype property from functions created from this * FunctionTemplate. */ void RemovePrototype(); /** * Returns true if the given object is an instance of this function * template. */ bool HasInstance(Local<Value> object); /** * Returns true if the given value is an API object that was constructed by an * instance of this function template (without checking for inheriting * function templates). * * This is an experimental feature and may still change significantly. */ bool IsLeafTemplateForApiObject(v8::Local<v8::Value> value) const; V8_INLINE static FunctionTemplate* Cast(Data* data); private: FunctionTemplate(); static void CheckCast(Data* that); friend class Context; friend class ObjectTemplate; }; /** * Configuration flags for v8::NamedPropertyHandlerConfiguration or * v8::IndexedPropertyHandlerConfiguration. */ enum class PropertyHandlerFlags { /** * None. */ kNone = 0, /** * See ALL_CAN_READ above. */ kAllCanRead = 1, /** Will not call into interceptor for properties on the receiver or prototype * chain, i.e., only call into interceptor for properties that do not exist. * Currently only valid for named interceptors. */ kNonMasking = 1 << 1, /** * Will not call into interceptor for symbol lookup. Only meaningful for * named interceptors. */ kOnlyInterceptStrings = 1 << 2, /** * The getter, query, enumerator callbacks do not produce side effects. */ kHasNoSideEffect = 1 << 3, }; struct NamedPropertyHandlerConfiguration { NamedPropertyHandlerConfiguration( GenericNamedPropertyGetterCallback getter, GenericNamedPropertySetterCallback setter, GenericNamedPropertyQueryCallback query, GenericNamedPropertyDeleterCallback deleter, GenericNamedPropertyEnumeratorCallback enumerator, GenericNamedPropertyDefinerCallback definer, GenericNamedPropertyDescriptorCallback descriptor, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} NamedPropertyHandlerConfiguration( /** Note: getter is required */ GenericNamedPropertyGetterCallback getter = nullptr, GenericNamedPropertySetterCallback setter = nullptr, GenericNamedPropertyQueryCallback query = nullptr, GenericNamedPropertyDeleterCallback deleter = nullptr, GenericNamedPropertyEnumeratorCallback enumerator = nullptr, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(nullptr), descriptor(nullptr), data(data), flags(flags) {} NamedPropertyHandlerConfiguration( GenericNamedPropertyGetterCallback getter, GenericNamedPropertySetterCallback setter, GenericNamedPropertyDescriptorCallback descriptor, GenericNamedPropertyDeleterCallback deleter, GenericNamedPropertyEnumeratorCallback enumerator, GenericNamedPropertyDefinerCallback definer, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(nullptr), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} GenericNamedPropertyGetterCallback getter; GenericNamedPropertySetterCallback setter; GenericNamedPropertyQueryCallback query; GenericNamedPropertyDeleterCallback deleter; GenericNamedPropertyEnumeratorCallback enumerator; GenericNamedPropertyDefinerCallback definer; GenericNamedPropertyDescriptorCallback descriptor; Local<Value> data; PropertyHandlerFlags flags; }; struct IndexedPropertyHandlerConfiguration { IndexedPropertyHandlerConfiguration( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter, IndexedPropertyQueryCallback query, IndexedPropertyDeleterCallback deleter, IndexedPropertyEnumeratorCallback enumerator, IndexedPropertyDefinerCallback definer, IndexedPropertyDescriptorCallback descriptor, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} IndexedPropertyHandlerConfiguration( /** Note: getter is required */ IndexedPropertyGetterCallback getter = nullptr, IndexedPropertySetterCallback setter = nullptr, IndexedPropertyQueryCallback query = nullptr, IndexedPropertyDeleterCallback deleter = nullptr, IndexedPropertyEnumeratorCallback enumerator = nullptr, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(nullptr), descriptor(nullptr), data(data), flags(flags) {} IndexedPropertyHandlerConfiguration( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter, IndexedPropertyDescriptorCallback descriptor, IndexedPropertyDeleterCallback deleter, IndexedPropertyEnumeratorCallback enumerator, IndexedPropertyDefinerCallback definer, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(nullptr), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} IndexedPropertyGetterCallback getter; IndexedPropertySetterCallback setter; IndexedPropertyQueryCallback query; IndexedPropertyDeleterCallback deleter; IndexedPropertyEnumeratorCallback enumerator; IndexedPropertyDefinerCallback definer; IndexedPropertyDescriptorCallback descriptor; Local<Value> data; PropertyHandlerFlags flags; }; /** * An ObjectTemplate is used to create objects at runtime. * * Properties added to an ObjectTemplate are added to each object * created from the ObjectTemplate. */ class V8_EXPORT ObjectTemplate : public Template { public: /** Creates an ObjectTemplate. */ static Local<ObjectTemplate> New( Isolate* isolate, Local<FunctionTemplate> constructor = Local<FunctionTemplate>()); /** Creates a new instance of this template.*/ V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context); /** * Sets an accessor on the object template. * * Whenever the property with the given name is accessed on objects * created from this ObjectTemplate the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetAccessor( Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = nullptr, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); void SetAccessor( Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = nullptr, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect, SideEffectType setter_side_effect_type = SideEffectType::kHasSideEffect); /** * Sets a named property handler on the object template. * * Whenever a property whose name is a string or a symbol is accessed on * objects created from this object template, the provided callback is * invoked instead of accessing the property directly on the JavaScript * object. * * @param configuration The NamedPropertyHandlerConfiguration that defines the * callbacks to invoke when accessing a property. */ void SetHandler(const NamedPropertyHandlerConfiguration& configuration); /** * Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check if an object has a property. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the indexed * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ // TODO(dcarney): deprecate void SetIndexedPropertyHandler( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter = nullptr, IndexedPropertyQueryCallback query = nullptr, IndexedPropertyDeleterCallback deleter = nullptr, IndexedPropertyEnumeratorCallback enumerator = nullptr, Local<Value> data = Local<Value>()) { SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query, deleter, enumerator, data)); } /** * Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * @param configuration The IndexedPropertyHandlerConfiguration that defines * the callbacks to invoke when accessing a property. */ void SetHandler(const IndexedPropertyHandlerConfiguration& configuration); /** * Sets the callback to be used when calling instances created from * this template as a function. If no callback is set, instances * behave like normal JavaScript objects that cannot be called as a * function. */ void SetCallAsFunctionHandler(FunctionCallback callback, Local<Value> data = Local<Value>()); /** * Mark object instances of the template as undetectable. * * In many ways, undetectable objects behave as though they are not * there. They behave like 'undefined' in conditionals and when * printed. However, properties can be accessed and called as on * normal objects. */ void MarkAsUndetectable(); /** * Sets access check callback on the object template and enables access * checks. * * When accessing properties on instances of this object template, * the access check callback will be called to determine whether or * not to allow cross-context access to the properties. */ void SetAccessCheckCallback(AccessCheckCallback callback, Local<Value> data = Local<Value>()); /** * Like SetAccessCheckCallback but invokes an interceptor on failed access * checks instead of looking up all-can-read properties. You can only use * either this method or SetAccessCheckCallback, but not both at the same * time. */ void SetAccessCheckCallbackAndHandler( AccessCheckCallback callback, const NamedPropertyHandlerConfiguration& named_handler, const IndexedPropertyHandlerConfiguration& indexed_handler, Local<Value> data = Local<Value>()); /** * Gets the number of internal fields for objects generated from * this template. */ int InternalFieldCount(); /** * Sets the number of internal fields for objects generated from * this template. */ void SetInternalFieldCount(int value); /** * Returns true if the object will be an immutable prototype exotic object. */ bool IsImmutableProto(); /** * Makes the ObjectTemplate for an immutable prototype exotic object, with an * immutable __proto__. */ void SetImmutableProto(); /** * Support for TC39 "dynamic code brand checks" proposal. * * This API allows to mark (& query) objects as "code like", which causes * them to be treated like Strings in the context of eval and function * constructor. * * Reference: https://github.com/tc39/proposal-dynamic-code-brand-checks */ void SetCodeLike(); bool IsCodeLike(); V8_INLINE static ObjectTemplate* Cast(Data* data); private: ObjectTemplate(); static Local<ObjectTemplate> New(internal::Isolate* isolate, Local<FunctionTemplate> constructor); static void CheckCast(Data* that); friend class FunctionTemplate; }; /** * A Signature specifies which receiver is valid for a function. * * A receiver matches a given signature if the receiver (or any of its * hidden prototypes) was created from the signature's FunctionTemplate, or * from a FunctionTemplate that inherits directly or indirectly from the * signature's FunctionTemplate. */ class V8_EXPORT Signature : public Data { public: static Local<Signature> New( Isolate* isolate, Local<FunctionTemplate> receiver = Local<FunctionTemplate>()); V8_INLINE static Signature* Cast(Data* data); private: Signature(); static void CheckCast(Data* that); }; /** * An AccessorSignature specifies which receivers are valid parameters * to an accessor callback. */ class V8_EXPORT AccessorSignature : public Data { public: static Local<AccessorSignature> New( Isolate* isolate, Local<FunctionTemplate> receiver = Local<FunctionTemplate>()); V8_INLINE static AccessorSignature* Cast(Data* data); private: AccessorSignature(); static void CheckCast(Data* that); }; // --- Extensions --- /** * Ignore */ class V8_EXPORT Extension { public: // Note that the strings passed into this constructor must live as long // as the Extension itself. Extension(const char* name, const char* source = nullptr, int dep_count = 0, const char** deps = nullptr, int source_length = -1); virtual ~Extension() { delete source_; } virtual Local<FunctionTemplate> GetNativeFunctionTemplate( Isolate* isolate, Local<String> name) { return Local<FunctionTemplate>(); } const char* name() const { return name_; } size_t source_length() const { return source_length_; } const String::ExternalOneByteStringResource* source() const { return source_; } int dependency_count() const { return dep_count_; } const char** dependencies() const { return deps_; } void set_auto_enable(bool value) { auto_enable_ = value; } bool auto_enable() { return auto_enable_; } // Disallow copying and assigning. Extension(const Extension&) = delete; void operator=(const Extension&) = delete; private: const char* name_; size_t source_length_; // expected to initialize before source_ String::ExternalOneByteStringResource* source_; int dep_count_; const char** deps_; bool auto_enable_; }; void V8_EXPORT RegisterExtension(std::unique_ptr<Extension>); // --- Statics --- V8_INLINE Local<Primitive> Undefined(Isolate* isolate); V8_INLINE Local<Primitive> Null(Isolate* isolate); V8_INLINE Local<Boolean> True(Isolate* isolate); V8_INLINE Local<Boolean> False(Isolate* isolate); /** * A set of constraints that specifies the limits of the runtime's memory use. * You must set the heap size before initializing the VM - the size cannot be * adjusted after the VM is initialized. * * If you are using threads then you should hold the V8::Locker lock while * setting the stack limit and you must set a non-default stack limit separately * for each thread. * * The arguments for set_max_semi_space_size, set_max_old_space_size, * set_max_executable_size, set_code_range_size specify limits in MB. * * The argument for set_max_semi_space_size_in_kb is in KB. */ class V8_EXPORT ResourceConstraints { public: /** * Configures the constraints with reasonable default values based on the * provided heap size limit. The heap size includes both the young and * the old generation. * * \param initial_heap_size_in_bytes The initial heap size or zero. * By default V8 starts with a small heap and dynamically grows it to * match the set of live objects. This may lead to ineffective * garbage collections at startup if the live set is large. * Setting the initial heap size avoids such garbage collections. * Note that this does not affect young generation garbage collections. * * \param maximum_heap_size_in_bytes The hard limit for the heap size. * When the heap size approaches this limit, V8 will perform series of * garbage collections and invoke the NearHeapLimitCallback. If the garbage * collections do not help and the callback does not increase the limit, * then V8 will crash with V8::FatalProcessOutOfMemory. */ void ConfigureDefaultsFromHeapSize(size_t initial_heap_size_in_bytes, size_t maximum_heap_size_in_bytes); /** * Configures the constraints with reasonable default values based on the * capabilities of the current device the VM is running on. * * \param physical_memory The total amount of physical memory on the current * device, in bytes. * \param virtual_memory_limit The amount of virtual memory on the current * device, in bytes, or zero, if there is no limit. */ void ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit); /** * The address beyond which the VM's stack may not grow. */ uint32_t* stack_limit() const { return stack_limit_; } void set_stack_limit(uint32_t* value) { stack_limit_ = value; } /** * The amount of virtual memory reserved for generated code. This is relevant * for 64-bit architectures that rely on code range for calls in code. * * When V8_COMPRESS_POINTERS_IN_SHARED_CAGE is defined, there is a shared * process-wide code range that is lazily initialized. This value is used to * configure that shared code range when the first Isolate is * created. Subsequent Isolates ignore this value. */ size_t code_range_size_in_bytes() const { return code_range_size_; } void set_code_range_size_in_bytes(size_t limit) { code_range_size_ = limit; } /** * The maximum size of the old generation. * When the old generation approaches this limit, V8 will perform series of * garbage collections and invoke the NearHeapLimitCallback. * If the garbage collections do not help and the callback does not * increase the limit, then V8 will crash with V8::FatalProcessOutOfMemory. */ size_t max_old_generation_size_in_bytes() const { return max_old_generation_size_; } void set_max_old_generation_size_in_bytes(size_t limit) { max_old_generation_size_ = limit; } /** * The maximum size of the young generation, which consists of two semi-spaces * and a large object space. This affects frequency of Scavenge garbage * collections and should be typically much smaller that the old generation. */ size_t max_young_generation_size_in_bytes() const { return max_young_generation_size_; } void set_max_young_generation_size_in_bytes(size_t limit) { max_young_generation_size_ = limit; } size_t initial_old_generation_size_in_bytes() const { return initial_old_generation_size_; } void set_initial_old_generation_size_in_bytes(size_t initial_size) { initial_old_generation_size_ = initial_size; } size_t initial_young_generation_size_in_bytes() const { return initial_young_generation_size_; } void set_initial_young_generation_size_in_bytes(size_t initial_size) { initial_young_generation_size_ = initial_size; } private: static constexpr size_t kMB = 1048576u; size_t code_range_size_ = 0; size_t max_old_generation_size_ = 0; size_t max_young_generation_size_ = 0; size_t initial_old_generation_size_ = 0; size_t initial_young_generation_size_ = 0; uint32_t* stack_limit_ = nullptr; }; // --- Exceptions --- using FatalErrorCallback = void (*)(const char* location, const char* message); using OOMErrorCallback = void (*)(const char* location, bool is_heap_oom); using DcheckErrorCallback = void (*)(const char* file, int line, const char* message); using MessageCallback = void (*)(Local<Message> message, Local<Value> data); // --- Tracing --- enum LogEventStatus : int { kStart = 0, kEnd = 1, kStamp = 2 }; using LogEventCallback = void (*)(const char* name, int /* LogEventStatus */ status); /** * Create new error objects by calling the corresponding error object * constructor with the message. */ class V8_EXPORT Exception { public: static Local<Value> RangeError(Local<String> message); static Local<Value> ReferenceError(Local<String> message); static Local<Value> SyntaxError(Local<String> message); static Local<Value> TypeError(Local<String> message); static Local<Value> WasmCompileError(Local<String> message); static Local<Value> WasmLinkError(Local<String> message); static Local<Value> WasmRuntimeError(Local<String> message); static Local<Value> Error(Local<String> message); /** * Creates an error message for the given exception. * Will try to reconstruct the original stack trace from the exception value, * or capture the current stack trace if not available. */ static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception); /** * Returns the original stack trace that was captured at the creation time * of a given exception, or an empty handle if not available. */ static Local<StackTrace> GetStackTrace(Local<Value> exception); }; // --- Counters Callbacks --- using CounterLookupCallback = int* (*)(const char* name); using CreateHistogramCallback = void* (*)(const char* name, int min, int max, size_t buckets); using AddHistogramSampleCallback = void (*)(void* histogram, int sample); // --- Crashkeys Callback --- enum class CrashKeyId { kIsolateAddress, kReadonlySpaceFirstPageAddress, kMapSpaceFirstPageAddress, kCodeSpaceFirstPageAddress, kDumpType, }; using AddCrashKeyCallback = void (*)(CrashKeyId id, const std::string& value); // --- Enter/Leave Script Callback --- using BeforeCallEnteredCallback = void (*)(Isolate*); using CallCompletedCallback = void (*)(Isolate*); /** * HostImportModuleDynamicallyCallback is called when we require the * embedder to load a module. This is used as part of the dynamic * import syntax. * * The referrer contains metadata about the script/module that calls * import. * * The specifier is the name of the module that should be imported. * * The embedder must compile, instantiate, evaluate the Module, and * obtain its namespace object. * * The Promise returned from this function is forwarded to userland * JavaScript. The embedder must resolve this promise with the module * namespace object. In case of an exception, the embedder must reject * this promise with the exception. If the promise creation itself * fails (e.g. due to stack overflow), the embedder must propagate * that exception by returning an empty MaybeLocal. */ using HostImportModuleDynamicallyCallback = MaybeLocal<Promise> (*)(Local<Context> context, Local<ScriptOrModule> referrer, Local<String> specifier); /** * HostImportModuleDynamicallyWithImportAssertionsCallback is called when we * require the embedder to load a module. This is used as part of the dynamic * import syntax. * * The referrer contains metadata about the script/module that calls * import. * * The specifier is the name of the module that should be imported. * * The import_assertions are import assertions for this request in the form: * [key1, value1, key2, value2, ...] where the keys and values are of type * v8::String. Note, unlike the FixedArray passed to ResolveModuleCallback and * returned from ModuleRequest::GetImportAssertions(), this array does not * contain the source Locations of the assertions. * * The embedder must compile, instantiate, evaluate the Module, and * obtain its namespace object. * * The Promise returned from this function is forwarded to userland * JavaScript. The embedder must resolve this promise with the module * namespace object. In case of an exception, the embedder must reject * this promise with the exception. If the promise creation itself * fails (e.g. due to stack overflow), the embedder must propagate * that exception by returning an empty MaybeLocal. */ using HostImportModuleDynamicallyWithImportAssertionsCallback = MaybeLocal<Promise> (*)(Local<Context> context, Local<ScriptOrModule> referrer, Local<String> specifier, Local<FixedArray> import_assertions); /** * HostInitializeImportMetaObjectCallback is called the first time import.meta * is accessed for a module. Subsequent access will reuse the same value. * * The method combines two implementation-defined abstract operations into one: * HostGetImportMetaProperties and HostFinalizeImportMeta. * * The embedder should use v8::Object::CreateDataProperty to add properties on * the meta object. */ using HostInitializeImportMetaObjectCallback = void (*)(Local<Context> context, Local<Module> module, Local<Object> meta); /** * PrepareStackTraceCallback is called when the stack property of an error is * first accessed. The return value will be used as the stack value. If this * callback is registed, the |Error.prepareStackTrace| API will be disabled. * |sites| is an array of call sites, specified in * https://v8.dev/docs/stack-trace-api */ using PrepareStackTraceCallback = MaybeLocal<Value> (*)(Local<Context> context, Local<Value> error, Local<Array> sites); /** * PromiseHook with type kInit is called when a new promise is * created. When a new promise is created as part of the chain in the * case of Promise.then or in the intermediate promises created by * Promise.{race, all}/AsyncFunctionAwait, we pass the parent promise * otherwise we pass undefined. * * PromiseHook with type kResolve is called at the beginning of * resolve or reject function defined by CreateResolvingFunctions. * * PromiseHook with type kBefore is called at the beginning of the * PromiseReactionJob. * * PromiseHook with type kAfter is called right at the end of the * PromiseReactionJob. */ enum class PromiseHookType { kInit, kResolve, kBefore, kAfter }; using PromiseHook = void (*)(PromiseHookType type, Local<Promise> promise, Local<Value> parent); // --- Promise Reject Callback --- enum PromiseRejectEvent { kPromiseRejectWithNoHandler = 0, kPromiseHandlerAddedAfterReject = 1, kPromiseRejectAfterResolved = 2, kPromiseResolveAfterResolved = 3, }; class PromiseRejectMessage { public: PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event, Local<Value> value) : promise_(promise), event_(event), value_(value) {} V8_INLINE Local<Promise> GetPromise() const { return promise_; } V8_INLINE PromiseRejectEvent GetEvent() const { return event_; } V8_INLINE Local<Value> GetValue() const { return value_; } private: Local<Promise> promise_; PromiseRejectEvent event_; Local<Value> value_; }; using PromiseRejectCallback = void (*)(PromiseRejectMessage message); // --- Microtasks Callbacks --- using MicrotasksCompletedCallbackWithData = void (*)(Isolate*, void*); using MicrotaskCallback = void (*)(void* data); /** * Policy for running microtasks: * - explicit: microtasks are invoked with the * Isolate::PerformMicrotaskCheckpoint() method; * - scoped: microtasks invocation is controlled by MicrotasksScope objects; * - auto: microtasks are invoked when the script call depth decrements * to zero. */ enum class MicrotasksPolicy { kExplicit, kScoped, kAuto }; /** * Represents the microtask queue, where microtasks are stored and processed. * https://html.spec.whatwg.org/multipage/webappapis.html#microtask-queue * https://html.spec.whatwg.org/multipage/webappapis.html#enqueuejob(queuename,-job,-arguments) * https://html.spec.whatwg.org/multipage/webappapis.html#perform-a-microtask-checkpoint * * A MicrotaskQueue instance may be associated to multiple Contexts by passing * it to Context::New(), and they can be detached by Context::DetachGlobal(). * The embedder must keep the MicrotaskQueue instance alive until all associated * Contexts are gone or detached. * * Use the same instance of MicrotaskQueue for all Contexts that may access each * other synchronously. E.g. for Web embedding, use the same instance for all * origins that share the same URL scheme and eTLD+1. */ class V8_EXPORT MicrotaskQueue { public: /** * Creates an empty MicrotaskQueue instance. */ static std::unique_ptr<MicrotaskQueue> New( Isolate* isolate, MicrotasksPolicy policy = MicrotasksPolicy::kAuto); virtual ~MicrotaskQueue() = default; /** * Enqueues the callback to the queue. */ virtual void EnqueueMicrotask(Isolate* isolate, Local<Function> microtask) = 0; /** * Enqueues the callback to the queue. */ virtual void EnqueueMicrotask(v8::Isolate* isolate, MicrotaskCallback callback, void* data = nullptr) = 0; /** * Adds a callback to notify the embedder after microtasks were run. The * callback is triggered by explicit RunMicrotasks call or automatic * microtasks execution (see Isolate::SetMicrotasksPolicy). * * Callback will trigger even if microtasks were attempted to run, * but the microtasks queue was empty and no single microtask was actually * executed. * * Executing scripts inside the callback will not re-trigger microtasks and * the callback. */ virtual void AddMicrotasksCompletedCallback( MicrotasksCompletedCallbackWithData callback, void* data = nullptr) = 0; /** * Removes callback that was installed by AddMicrotasksCompletedCallback. */ virtual void RemoveMicrotasksCompletedCallback( MicrotasksCompletedCallbackWithData callback, void* data = nullptr) = 0; /** * Runs microtasks if no microtask is running on this MicrotaskQueue instance. */ virtual void PerformCheckpoint(Isolate* isolate) = 0; /** * Returns true if a microtask is running on this MicrotaskQueue instance. */ virtual bool IsRunningMicrotasks() const = 0; /** * Returns the current depth of nested MicrotasksScope that has * kRunMicrotasks. */ virtual int GetMicrotasksScopeDepth() const = 0; MicrotaskQueue(const MicrotaskQueue&) = delete; MicrotaskQueue& operator=(const MicrotaskQueue&) = delete; private: friend class internal::MicrotaskQueue; MicrotaskQueue() = default; }; /** * This scope is used to control microtasks when MicrotasksPolicy::kScoped * is used on Isolate. In this mode every non-primitive call to V8 should be * done inside some MicrotasksScope. * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks * exits. * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger * microtasks. */ class V8_EXPORT V8_NODISCARD MicrotasksScope { public: enum Type { kRunMicrotasks, kDoNotRunMicrotasks }; MicrotasksScope(Isolate* isolate, Type type); MicrotasksScope(Isolate* isolate, MicrotaskQueue* microtask_queue, Type type); ~MicrotasksScope(); /** * Runs microtasks if no kRunMicrotasks scope is currently active. */ static void PerformCheckpoint(Isolate* isolate); /** * Returns current depth of nested kRunMicrotasks scopes. */ static int GetCurrentDepth(Isolate* isolate); /** * Returns true while microtasks are being executed. */ static bool IsRunningMicrotasks(Isolate* isolate); // Prevent copying. MicrotasksScope(const MicrotasksScope&) = delete; MicrotasksScope& operator=(const MicrotasksScope&) = delete; private: internal::Isolate* const isolate_; internal::MicrotaskQueue* const microtask_queue_; bool run_; }; // --- Failed Access Check Callback --- using FailedAccessCheckCallback = void (*)(Local<Object> target, AccessType type, Local<Value> data); // --- AllowCodeGenerationFromStrings callbacks --- /** * Callback to check if code generation from strings is allowed. See * Context::AllowCodeGenerationFromStrings. */ using AllowCodeGenerationFromStringsCallback = bool (*)(Local<Context> context, Local<String> source); struct ModifyCodeGenerationFromStringsResult { // If true, proceed with the codegen algorithm. Otherwise, block it. bool codegen_allowed = false; // Overwrite the original source with this string, if present. // Use the original source if empty. // This field is considered only if codegen_allowed is true. MaybeLocal<String> modified_source; }; /** * Callback to check if codegen is allowed from a source object, and convert * the source to string if necessary. See: ModifyCodeGenerationFromStrings. */ using ModifyCodeGenerationFromStringsCallback = ModifyCodeGenerationFromStringsResult (*)(Local<Context> context, Local<Value> source); using ModifyCodeGenerationFromStringsCallback2 = ModifyCodeGenerationFromStringsResult (*)(Local<Context> context, Local<Value> source, bool is_code_like); // --- WebAssembly compilation callbacks --- using ExtensionCallback = bool (*)(const FunctionCallbackInfo<Value>&); using AllowWasmCodeGenerationCallback = bool (*)(Local<Context> context, Local<String> source); // --- Callback for APIs defined on v8-supported objects, but implemented // by the embedder. Example: WebAssembly.{compile|instantiate}Streaming --- using ApiImplementationCallback = void (*)(const FunctionCallbackInfo<Value>&); // --- Callback for WebAssembly.compileStreaming --- using WasmStreamingCallback = void (*)(const FunctionCallbackInfo<Value>&); // --- Callback for loading source map file for Wasm profiling support using WasmLoadSourceMapCallback = Local<String> (*)(Isolate* isolate, const char* name); // --- Callback for checking if WebAssembly Simd is enabled --- using WasmSimdEnabledCallback = bool (*)(Local<Context> context); // --- Callback for checking if WebAssembly exceptions are enabled --- using WasmExceptionsEnabledCallback = bool (*)(Local<Context> context); // --- Callback for checking if the SharedArrayBuffer constructor is enabled --- using SharedArrayBufferConstructorEnabledCallback = bool (*)(Local<Context> context); // --- Garbage Collection Callbacks --- /** * Applications can register callback functions which will be called before and * after certain garbage collection operations. Allocations are not allowed in * the callback functions, you therefore cannot manipulate objects (set or * delete properties for example) since it is possible such operations will * result in the allocation of objects. */ enum GCType { kGCTypeScavenge = 1 << 0, kGCTypeMarkSweepCompact = 1 << 1, kGCTypeIncrementalMarking = 1 << 2, kGCTypeProcessWeakCallbacks = 1 << 3, kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact | kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks }; /** * GCCallbackFlags is used to notify additional information about the GC * callback. * - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for * constructing retained object infos. * - kGCCallbackFlagForced: The GC callback is for a forced GC for testing. * - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback * is called synchronously without getting posted to an idle task. * - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called * in a phase where V8 is trying to collect all available garbage * (e.g., handling a low memory notification). * - kGCCallbackScheduleIdleGarbageCollection: The GC callback is called to * trigger an idle garbage collection. */ enum GCCallbackFlags { kNoGCCallbackFlags = 0, kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1, kGCCallbackFlagForced = 1 << 2, kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3, kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4, kGCCallbackFlagCollectAllExternalMemory = 1 << 5, kGCCallbackScheduleIdleGarbageCollection = 1 << 6, }; using GCCallback = void (*)(GCType type, GCCallbackFlags flags); using InterruptCallback = void (*)(Isolate* isolate, void* data); /** * This callback is invoked when the heap size is close to the heap limit and * V8 is likely to abort with out-of-memory error. * The callback can extend the heap limit by returning a value that is greater * than the current_heap_limit. The initial heap limit is the limit that was * set after heap setup. */ using NearHeapLimitCallback = size_t (*)(void* data, size_t current_heap_limit, size_t initial_heap_limit); /** * Collection of shared per-process V8 memory information. * * Instances of this class can be passed to * v8::V8::GetSharedMemoryStatistics to get shared memory statistics from V8. */ class V8_EXPORT SharedMemoryStatistics { public: SharedMemoryStatistics(); size_t read_only_space_size() { return read_only_space_size_; } size_t read_only_space_used_size() { return read_only_space_used_size_; } size_t read_only_space_physical_size() { return read_only_space_physical_size_; } private: size_t read_only_space_size_; size_t read_only_space_used_size_; size_t read_only_space_physical_size_; friend class V8; friend class internal::ReadOnlyHeap; }; /** * Collection of V8 heap information. * * Instances of this class can be passed to v8::Isolate::GetHeapStatistics to * get heap statistics from V8. */ class V8_EXPORT HeapStatistics { public: HeapStatistics(); size_t total_heap_size() { return total_heap_size_; } size_t total_heap_size_executable() { return total_heap_size_executable_; } size_t total_physical_size() { return total_physical_size_; } size_t total_available_size() { return total_available_size_; } size_t total_global_handles_size() { return total_global_handles_size_; } size_t used_global_handles_size() { return used_global_handles_size_; } size_t used_heap_size() { return used_heap_size_; } size_t heap_size_limit() { return heap_size_limit_; } size_t malloced_memory() { return malloced_memory_; } size_t external_memory() { return external_memory_; } size_t peak_malloced_memory() { return peak_malloced_memory_; } size_t number_of_native_contexts() { return number_of_native_contexts_; } size_t number_of_detached_contexts() { return number_of_detached_contexts_; } /** * Returns a 0/1 boolean, which signifies whether the V8 overwrite heap * garbage with a bit pattern. */ size_t does_zap_garbage() { return does_zap_garbage_; } private: size_t total_heap_size_; size_t total_heap_size_executable_; size_t total_physical_size_; size_t total_available_size_; size_t used_heap_size_; size_t heap_size_limit_; size_t malloced_memory_; size_t external_memory_; size_t peak_malloced_memory_; bool does_zap_garbage_; size_t number_of_native_contexts_; size_t number_of_detached_contexts_; size_t total_global_handles_size_; size_t used_global_handles_size_; friend class V8; friend class Isolate; }; class V8_EXPORT HeapSpaceStatistics { public: HeapSpaceStatistics(); const char* space_name() { return space_name_; } size_t space_size() { return space_size_; } size_t space_used_size() { return space_used_size_; } size_t space_available_size() { return space_available_size_; } size_t physical_space_size() { return physical_space_size_; } private: const char* space_name_; size_t space_size_; size_t space_used_size_; size_t space_available_size_; size_t physical_space_size_; friend class Isolate; }; class V8_EXPORT HeapObjectStatistics { public: HeapObjectStatistics(); const char* object_type() { return object_type_; } const char* object_sub_type() { return object_sub_type_; } size_t object_count() { return object_count_; } size_t object_size() { return object_size_; } private: const char* object_type_; const char* object_sub_type_; size_t object_count_; size_t object_size_; friend class Isolate; }; class V8_EXPORT HeapCodeStatistics { public: HeapCodeStatistics(); size_t code_and_metadata_size() { return code_and_metadata_size_; } size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; } size_t external_script_source_size() { return external_script_source_size_; } private: size_t code_and_metadata_size_; size_t bytecode_and_metadata_size_; size_t external_script_source_size_; friend class Isolate; }; /** * A JIT code event is issued each time code is added, moved or removed. * * \note removal events are not currently issued. */ struct JitCodeEvent { enum EventType { CODE_ADDED, CODE_MOVED, CODE_REMOVED, CODE_ADD_LINE_POS_INFO, CODE_START_LINE_INFO_RECORDING, CODE_END_LINE_INFO_RECORDING }; // Definition of the code position type. The "POSITION" type means the place // in the source code which are of interest when making stack traces to // pin-point the source location of a stack frame as close as possible. // The "STATEMENT_POSITION" means the place at the beginning of each // statement, and is used to indicate possible break locations. enum PositionType { POSITION, STATEMENT_POSITION }; // There are two different kinds of JitCodeEvents, one for JIT code generated // by the optimizing compiler, and one for byte code generated for the // interpreter. For JIT_CODE events, the |code_start| member of the event // points to the beginning of jitted assembly code, while for BYTE_CODE // events, |code_start| points to the first bytecode of the interpreted // function. enum CodeType { BYTE_CODE, JIT_CODE }; // Type of event. EventType type; CodeType code_type; // Start of the instructions. void* code_start; // Size of the instructions. size_t code_len; // Script info for CODE_ADDED event. Local<UnboundScript> script; // User-defined data for *_LINE_INFO_* event. It's used to hold the source // code line information which is returned from the // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events. void* user_data; struct name_t { // Name of the object associated with the code, note that the string is not // zero-terminated. const char* str; // Number of chars in str. size_t len; }; struct line_info_t { // PC offset size_t offset; // Code position size_t pos; // The position type. PositionType position_type; }; struct wasm_source_info_t { // Source file name. const char* filename; // Length of filename. size_t filename_size; // Line number table, which maps offsets of JITted code to line numbers of // source file. const line_info_t* line_number_table; // Number of entries in the line number table. size_t line_number_table_size; }; wasm_source_info_t* wasm_source_info; union { // Only valid for CODE_ADDED. struct name_t name; // Only valid for CODE_ADD_LINE_POS_INFO struct line_info_t line_info; // New location of instructions. Only valid for CODE_MOVED. void* new_code_start; }; Isolate* isolate; }; /** * Option flags passed to the SetRAILMode function. * See documentation https://developers.google.com/web/tools/chrome-devtools/ * profile/evaluate-performance/rail */ enum RAILMode : unsigned { // Response performance mode: In this mode very low virtual machine latency // is provided. V8 will try to avoid JavaScript execution interruptions. // Throughput may be throttled. PERFORMANCE_RESPONSE, // Animation performance mode: In this mode low virtual machine latency is // provided. V8 will try to avoid as many JavaScript execution interruptions // as possible. Throughput may be throttled. This is the default mode. PERFORMANCE_ANIMATION, // Idle performance mode: The embedder is idle. V8 can complete deferred work // in this mode. PERFORMANCE_IDLE, // Load performance mode: In this mode high throughput is provided. V8 may // turn off latency optimizations. PERFORMANCE_LOAD }; /** * Option flags passed to the SetJitCodeEventHandler function. */ enum JitCodeEventOptions { kJitCodeEventDefault = 0, // Generate callbacks for already existent code. kJitCodeEventEnumExisting = 1 }; /** * Callback function passed to SetJitCodeEventHandler. * * \param event code add, move or removal event. */ using JitCodeEventHandler = void (*)(const JitCodeEvent* event); /** * Callback function passed to SetUnhandledExceptionCallback. */ #if defined(V8_OS_WIN) using UnhandledExceptionCallback = int (*)(_EXCEPTION_POINTERS* exception_pointers); #endif /** * Interface for iterating through all external resources in the heap. */ class V8_EXPORT ExternalResourceVisitor { public: virtual ~ExternalResourceVisitor() = default; virtual void VisitExternalString(Local<String> string) {} }; /** * Interface for iterating through all the persistent handles in the heap. */ class V8_EXPORT PersistentHandleVisitor { public: virtual ~PersistentHandleVisitor() = default; virtual void VisitPersistentHandle(Persistent<Value>* value, uint16_t class_id) {} }; /** * Memory pressure level for the MemoryPressureNotification. * kNone hints V8 that there is no memory pressure. * kModerate hints V8 to speed up incremental garbage collection at the cost of * of higher latency due to garbage collection pauses. * kCritical hints V8 to free memory as soon as possible. Garbage collection * pauses at this level will be large. */ enum class MemoryPressureLevel { kNone, kModerate, kCritical }; /** * Handler for embedder roots on non-unified heap garbage collections. */ class V8_EXPORT EmbedderRootsHandler { public: virtual ~EmbedderRootsHandler() = default; /** * Returns true if the TracedGlobal handle should be considered as root for * the currently running non-tracing garbage collection and false otherwise. * The default implementation will keep all TracedGlobal references as roots. * * If this returns false, then V8 may decide that the object referred to by * such a handle is reclaimed. In that case: * - No action is required if handles are used with destructors, i.e., by just * using |TracedGlobal|. * - When run without destructors, i.e., by using |TracedReference|, V8 calls * |ResetRoot|. * * Note that the |handle| is different from the handle that the embedder holds * for retaining the object. The embedder may use |WrapperClassId()| to * distinguish cases where it wants handles to be treated as roots from not * being treated as roots. */ virtual bool IsRoot(const v8::TracedReference<v8::Value>& handle) = 0; virtual bool IsRoot(const v8::TracedGlobal<v8::Value>& handle) = 0; /** * Used in combination with |IsRoot|. Called by V8 when an * object that is backed by a handle is reclaimed by a non-tracing garbage * collection. It is up to the embedder to reset the original handle. * * Note that the |handle| is different from the handle that the embedder holds * for retaining the object. It is up to the embedder to find the original * handle via the object or class id. */ virtual void ResetRoot(const v8::TracedReference<v8::Value>& handle) = 0; }; /** * Interface for tracing through the embedder heap. During a V8 garbage * collection, V8 collects hidden fields of all potential wrappers, and at the * end of its marking phase iterates the collection and asks the embedder to * trace through its heap and use reporter to report each JavaScript object * reachable from any of the given wrappers. */ class V8_EXPORT EmbedderHeapTracer { public: using EmbedderStackState = cppgc::EmbedderStackState; enum TraceFlags : uint64_t { kNoFlags = 0, kReduceMemory = 1 << 0, kForced = 1 << 2, }; /** * Interface for iterating through TracedGlobal handles. */ class V8_EXPORT TracedGlobalHandleVisitor { public: virtual ~TracedGlobalHandleVisitor() = default; virtual void VisitTracedGlobalHandle(const TracedGlobal<Value>& handle) {} virtual void VisitTracedReference(const TracedReference<Value>& handle) {} }; /** * Summary of a garbage collection cycle. See |TraceEpilogue| on how the * summary is reported. */ struct TraceSummary { /** * Time spent managing the retained memory in milliseconds. This can e.g. * include the time tracing through objects in the embedder. */ double time = 0.0; /** * Memory retained by the embedder through the |EmbedderHeapTracer| * mechanism in bytes. */ size_t allocated_size = 0; }; virtual ~EmbedderHeapTracer() = default; /** * Iterates all TracedGlobal handles created for the v8::Isolate the tracer is * attached to. */ void IterateTracedGlobalHandles(TracedGlobalHandleVisitor* visitor); /** * Called by the embedder to set the start of the stack which is e.g. used by * V8 to determine whether handles are used from stack or heap. */ void SetStackStart(void* stack_start); /** * Called by the embedder to notify V8 of an empty execution stack. */ V8_DEPRECATE_SOON( "This call only optimized internal caches which V8 is able to figure out " "on its own now.") void NotifyEmptyEmbedderStack(); /** * Called by v8 to register internal fields of found wrappers. * * The embedder is expected to store them somewhere and trace reachable * wrappers from them when called through |AdvanceTracing|. */ virtual void RegisterV8References( const std::vector<std::pair<void*, void*> >& embedder_fields) = 0; void RegisterEmbedderReference(const BasicTracedReference<v8::Data>& ref); /** * Called at the beginning of a GC cycle. */ virtual void TracePrologue(TraceFlags flags) {} /** * Called to advance tracing in the embedder. * * The embedder is expected to trace its heap starting from wrappers reported * by RegisterV8References method, and report back all reachable wrappers. * Furthermore, the embedder is expected to stop tracing by the given * deadline. A deadline of infinity means that tracing should be finished. * * Returns |true| if tracing is done, and false otherwise. */ virtual bool AdvanceTracing(double deadline_in_ms) = 0; /* * Returns true if there no more tracing work to be done (see AdvanceTracing) * and false otherwise. */ virtual bool IsTracingDone() = 0; /** * Called at the end of a GC cycle. * * Note that allocation is *not* allowed within |TraceEpilogue|. Can be * overriden to fill a |TraceSummary| that is used by V8 to schedule future * garbage collections. */ virtual void TraceEpilogue(TraceSummary* trace_summary) {} /** * Called upon entering the final marking pause. No more incremental marking * steps will follow this call. */ virtual void EnterFinalPause(EmbedderStackState stack_state) = 0; /* * Called by the embedder to request immediate finalization of the currently * running tracing phase that has been started with TracePrologue and not * yet finished with TraceEpilogue. * * Will be a noop when currently not in tracing. * * This is an experimental feature. */ void FinalizeTracing(); /** * See documentation on EmbedderRootsHandler. */ virtual bool IsRootForNonTracingGC( const v8::TracedReference<v8::Value>& handle); virtual bool IsRootForNonTracingGC(const v8::TracedGlobal<v8::Value>& handle); /** * See documentation on EmbedderRootsHandler. */ virtual void ResetHandleInNonTracingGC( const v8::TracedReference<v8::Value>& handle); /* * Called by the embedder to immediately perform a full garbage collection. * * Should only be used in testing code. */ void GarbageCollectionForTesting(EmbedderStackState stack_state); /* * Called by the embedder to signal newly allocated or freed memory. Not bound * to tracing phases. Embedders should trade off when increments are reported * as V8 may consult global heuristics on whether to trigger garbage * collection on this change. */ void IncreaseAllocatedSize(size_t bytes); void DecreaseAllocatedSize(size_t bytes); /* * Returns the v8::Isolate this tracer is attached too and |nullptr| if it * is not attached to any v8::Isolate. */ v8::Isolate* isolate() const { return isolate_; } protected: v8::Isolate* isolate_ = nullptr; friend class internal::LocalEmbedderHeapTracer; }; /** * Callback and supporting data used in SnapshotCreator to implement embedder * logic to serialize internal fields. * Internal fields that directly reference V8 objects are serialized without * calling this callback. Internal fields that contain aligned pointers are * serialized by this callback if it returns non-zero result. Otherwise it is * serialized verbatim. */ struct SerializeInternalFieldsCallback { using CallbackFunction = StartupData (*)(Local<Object> holder, int index, void* data); SerializeInternalFieldsCallback(CallbackFunction function = nullptr, void* data_arg = nullptr) : callback(function), data(data_arg) {} CallbackFunction callback; void* data; }; // Note that these fields are called "internal fields" in the API and called // "embedder fields" within V8. using SerializeEmbedderFieldsCallback = SerializeInternalFieldsCallback; /** * Callback and supporting data used to implement embedder logic to deserialize * internal fields. */ struct DeserializeInternalFieldsCallback { using CallbackFunction = void (*)(Local<Object> holder, int index, StartupData payload, void* data); DeserializeInternalFieldsCallback(CallbackFunction function = nullptr, void* data_arg = nullptr) : callback(function), data(data_arg) {} void (*callback)(Local<Object> holder, int index, StartupData payload, void* data); void* data; }; using DeserializeEmbedderFieldsCallback = DeserializeInternalFieldsCallback; /** * Controls how the default MeasureMemoryDelegate reports the result of * the memory measurement to JS. With kSummary only the total size is reported. * With kDetailed the result includes the size of each native context. */ enum class MeasureMemoryMode { kSummary, kDetailed }; /** * Controls how promptly a memory measurement request is executed. * By default the measurement is folded with the next scheduled GC which may * happen after a while and is forced after some timeout. * The kEager mode starts incremental GC right away and is useful for testing. * The kLazy mode does not force GC. */ enum class MeasureMemoryExecution { kDefault, kEager, kLazy }; /** * The delegate is used in Isolate::MeasureMemory API. * * It specifies the contexts that need to be measured and gets called when * the measurement is completed to report the results. */ class V8_EXPORT MeasureMemoryDelegate { public: virtual ~MeasureMemoryDelegate() = default; /** * Returns true if the size of the given context needs to be measured. */ virtual bool ShouldMeasure(Local<Context> context) = 0; /** * This function is called when memory measurement finishes. * * \param context_sizes_in_bytes a vector of (context, size) pairs that * includes each context for which ShouldMeasure returned true and that * was not garbage collected while the memory measurement was in progress. * * \param unattributed_size_in_bytes total size of objects that were not * attributed to any context (i.e. are likely shared objects). */ virtual void MeasurementComplete( const std::vector<std::pair<Local<Context>, size_t>>& context_sizes_in_bytes, size_t unattributed_size_in_bytes) = 0; /** * Returns a default delegate that resolves the given promise when * the memory measurement completes. * * \param isolate the current isolate * \param context the current context * \param promise_resolver the promise resolver that is given the * result of the memory measurement. * \param mode the detail level of the result. */ static std::unique_ptr<MeasureMemoryDelegate> Default( Isolate* isolate, Local<Context> context, Local<Promise::Resolver> promise_resolver, MeasureMemoryMode mode); }; /** * Isolate represents an isolated instance of the V8 engine. V8 isolates have * completely separate states. Objects from one isolate must not be used in * other isolates. The embedder can create multiple isolates and use them in * parallel in multiple threads. An isolate can be entered by at most one * thread at any given time. The Locker/Unlocker API must be used to * synchronize. */ class V8_EXPORT Isolate { public: /** * Initial configuration parameters for a new Isolate. */ struct V8_EXPORT CreateParams { CreateParams(); ~CreateParams(); /** * Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. */ JitCodeEventHandler code_event_handler = nullptr; /** * ResourceConstraints to use for the new Isolate. */ ResourceConstraints constraints; /** * Explicitly specify a startup snapshot blob. The embedder owns the blob. */ StartupData* snapshot_blob = nullptr; /** * Enables the host application to provide a mechanism for recording * statistics counters. */ CounterLookupCallback counter_lookup_callback = nullptr; /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ CreateHistogramCallback create_histogram_callback = nullptr; AddHistogramSampleCallback add_histogram_sample_callback = nullptr; /** * The ArrayBuffer::Allocator to use for allocating and freeing the backing * store of ArrayBuffers. * * If the shared_ptr version is used, the Isolate instance and every * |BackingStore| allocated using this allocator hold a std::shared_ptr * to the allocator, in order to facilitate lifetime * management for the allocator instance. */ ArrayBuffer::Allocator* array_buffer_allocator = nullptr; std::shared_ptr<ArrayBuffer::Allocator> array_buffer_allocator_shared; /** * Specifies an optional nullptr-terminated array of raw addresses in the * embedder that V8 can match against during serialization and use for * deserialization. This array and its content must stay valid for the * entire lifetime of the isolate. */ const intptr_t* external_references = nullptr; /** * Whether calling Atomics.wait (a function that may block) is allowed in * this isolate. This can also be configured via SetAllowAtomicsWait. */ bool allow_atomics_wait = true; /** * Termination is postponed when there is no active SafeForTerminationScope. */ bool only_terminate_in_safe_scope = false; /** * The following parameters describe the offsets for addressing type info * for wrapped API objects and are used by the fast C API * (for details see v8-fast-api-calls.h). */ int embedder_wrapper_type_index = -1; int embedder_wrapper_object_index = -1; V8_DEPRECATED( "Setting this has no effect. Embedders should ignore import assertions " "that they do not use.") std::vector<std::string> supported_import_assertions; }; /** * Stack-allocated class which sets the isolate for all operations * executed within a local scope. */ class V8_EXPORT V8_NODISCARD Scope { public: explicit Scope(Isolate* isolate) : isolate_(isolate) { isolate->Enter(); } ~Scope() { isolate_->Exit(); } // Prevent copying of Scope objects. Scope(const Scope&) = delete; Scope& operator=(const Scope&) = delete; private: Isolate* const isolate_; }; /** * Assert that no Javascript code is invoked. */ class V8_EXPORT V8_NODISCARD DisallowJavascriptExecutionScope { public: enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE, DUMP_ON_FAILURE }; DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure); ~DisallowJavascriptExecutionScope(); // Prevent copying of Scope objects. DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) = delete; DisallowJavascriptExecutionScope& operator=( const DisallowJavascriptExecutionScope&) = delete; private: OnFailure on_failure_; Isolate* isolate_; bool was_execution_allowed_assert_; bool was_execution_allowed_throws_; bool was_execution_allowed_dump_; }; /** * Introduce exception to DisallowJavascriptExecutionScope. */ class V8_EXPORT V8_NODISCARD AllowJavascriptExecutionScope { public: explicit AllowJavascriptExecutionScope(Isolate* isolate); ~AllowJavascriptExecutionScope(); // Prevent copying of Scope objects. AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) = delete; AllowJavascriptExecutionScope& operator=( const AllowJavascriptExecutionScope&) = delete; private: Isolate* isolate_; bool was_execution_allowed_assert_; bool was_execution_allowed_throws_; bool was_execution_allowed_dump_; }; /** * Do not run microtasks while this scope is active, even if microtasks are * automatically executed otherwise. */ class V8_EXPORT V8_NODISCARD SuppressMicrotaskExecutionScope { public: explicit SuppressMicrotaskExecutionScope( Isolate* isolate, MicrotaskQueue* microtask_queue = nullptr); ~SuppressMicrotaskExecutionScope(); // Prevent copying of Scope objects. SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) = delete; SuppressMicrotaskExecutionScope& operator=( const SuppressMicrotaskExecutionScope&) = delete; private: internal::Isolate* const isolate_; internal::MicrotaskQueue* const microtask_queue_; internal::Address previous_stack_height_; friend class internal::ThreadLocalTop; }; /** * This scope allows terminations inside direct V8 API calls and forbid them * inside any recursive API calls without explicit SafeForTerminationScope. */ class V8_EXPORT V8_NODISCARD SafeForTerminationScope { public: explicit SafeForTerminationScope(v8::Isolate* isolate); ~SafeForTerminationScope(); // Prevent copying of Scope objects. SafeForTerminationScope(const SafeForTerminationScope&) = delete; SafeForTerminationScope& operator=(const SafeForTerminationScope&) = delete; private: internal::Isolate* isolate_; bool prev_value_; }; /** * Types of garbage collections that can be requested via * RequestGarbageCollectionForTesting. */ enum GarbageCollectionType { kFullGarbageCollection, kMinorGarbageCollection }; /** * Features reported via the SetUseCounterCallback callback. Do not change * assigned numbers of existing items; add new features to the end of this * list. */ enum UseCounterFeature { kUseAsm = 0, kBreakIterator = 1, kLegacyConst = 2, kMarkDequeOverflow = 3, kStoreBufferOverflow = 4, kSlotsBufferOverflow = 5, kObjectObserve = 6, kForcedGC = 7, kSloppyMode = 8, kStrictMode = 9, kStrongMode = 10, kRegExpPrototypeStickyGetter = 11, kRegExpPrototypeToString = 12, kRegExpPrototypeUnicodeGetter = 13, kIntlV8Parse = 14, kIntlPattern = 15, kIntlResolved = 16, kPromiseChain = 17, kPromiseAccept = 18, kPromiseDefer = 19, kHtmlCommentInExternalScript = 20, kHtmlComment = 21, kSloppyModeBlockScopedFunctionRedefinition = 22, kForInInitializer = 23, kArrayProtectorDirtied = 24, kArraySpeciesModified = 25, kArrayPrototypeConstructorModified = 26, kArrayInstanceProtoModified = 27, kArrayInstanceConstructorModified = 28, kLegacyFunctionDeclaration = 29, kRegExpPrototypeSourceGetter = 30, // Unused. kRegExpPrototypeOldFlagGetter = 31, // Unused. kDecimalWithLeadingZeroInStrictMode = 32, kLegacyDateParser = 33, kDefineGetterOrSetterWouldThrow = 34, kFunctionConstructorReturnedUndefined = 35, kAssigmentExpressionLHSIsCallInSloppy = 36, kAssigmentExpressionLHSIsCallInStrict = 37, kPromiseConstructorReturnedUndefined = 38, kConstructorNonUndefinedPrimitiveReturn = 39, kLabeledExpressionStatement = 40, kLineOrParagraphSeparatorAsLineTerminator = 41, kIndexAccessor = 42, kErrorCaptureStackTrace = 43, kErrorPrepareStackTrace = 44, kErrorStackTraceLimit = 45, kWebAssemblyInstantiation = 46, kDeoptimizerDisableSpeculation = 47, kArrayPrototypeSortJSArrayModifiedPrototype = 48, kFunctionTokenOffsetTooLongForToString = 49, kWasmSharedMemory = 50, kWasmThreadOpcodes = 51, kAtomicsNotify = 52, // Unused. kAtomicsWake = 53, // Unused. kCollator = 54, kNumberFormat = 55, kDateTimeFormat = 56, kPluralRules = 57, kRelativeTimeFormat = 58, kLocale = 59, kListFormat = 60, kSegmenter = 61, kStringLocaleCompare = 62, kStringToLocaleUpperCase = 63, kStringToLocaleLowerCase = 64, kNumberToLocaleString = 65, kDateToLocaleString = 66, kDateToLocaleDateString = 67, kDateToLocaleTimeString = 68, kAttemptOverrideReadOnlyOnPrototypeSloppy = 69, kAttemptOverrideReadOnlyOnPrototypeStrict = 70, kOptimizedFunctionWithOneShotBytecode = 71, // Unused. kRegExpMatchIsTrueishOnNonJSRegExp = 72, kRegExpMatchIsFalseishOnJSRegExp = 73, kDateGetTimezoneOffset = 74, // Unused. kStringNormalize = 75, kCallSiteAPIGetFunctionSloppyCall = 76, kCallSiteAPIGetThisSloppyCall = 77, kRegExpMatchAllWithNonGlobalRegExp = 78, kRegExpExecCalledOnSlowRegExp = 79, kRegExpReplaceCalledOnSlowRegExp = 80, kDisplayNames = 81, kSharedArrayBufferConstructed = 82, kArrayPrototypeHasElements = 83, kObjectPrototypeHasElements = 84, kNumberFormatStyleUnit = 85, kDateTimeFormatRange = 86, kDateTimeFormatDateTimeStyle = 87, kBreakIteratorTypeWord = 88, kBreakIteratorTypeLine = 89, kInvalidatedArrayBufferDetachingProtector = 90, kInvalidatedArrayConstructorProtector = 91, kInvalidatedArrayIteratorLookupChainProtector = 92, kInvalidatedArraySpeciesLookupChainProtector = 93, kInvalidatedIsConcatSpreadableLookupChainProtector = 94, kInvalidatedMapIteratorLookupChainProtector = 95, kInvalidatedNoElementsProtector = 96, kInvalidatedPromiseHookProtector = 97, kInvalidatedPromiseResolveLookupChainProtector = 98, kInvalidatedPromiseSpeciesLookupChainProtector = 99, kInvalidatedPromiseThenLookupChainProtector = 100, kInvalidatedRegExpSpeciesLookupChainProtector = 101, kInvalidatedSetIteratorLookupChainProtector = 102, kInvalidatedStringIteratorLookupChainProtector = 103, kInvalidatedStringLengthOverflowLookupChainProtector = 104, kInvalidatedTypedArraySpeciesLookupChainProtector = 105, kWasmSimdOpcodes = 106, kVarRedeclaredCatchBinding = 107, kWasmRefTypes = 108, kWasmBulkMemory = 109, // Unused. kWasmMultiValue = 110, kWasmExceptionHandling = 111, kInvalidatedMegaDOMProtector = 112, // If you add new values here, you'll also need to update Chromium's: // web_feature.mojom, use_counter_callback.cc, and enums.xml. V8 changes to // this list need to be landed first, then changes on the Chromium side. kUseCounterFeatureCount // This enum value must be last. }; enum MessageErrorLevel { kMessageLog = (1 << 0), kMessageDebug = (1 << 1), kMessageInfo = (1 << 2), kMessageError = (1 << 3), kMessageWarning = (1 << 4), kMessageAll = kMessageLog | kMessageDebug | kMessageInfo | kMessageError | kMessageWarning, }; using UseCounterCallback = void (*)(Isolate* isolate, UseCounterFeature feature); /** * Allocates a new isolate but does not initialize it. Does not change the * currently entered isolate. * * Only Isolate::GetData() and Isolate::SetData(), which access the * embedder-controlled parts of the isolate, are allowed to be called on the * uninitialized isolate. To initialize the isolate, call * Isolate::Initialize(). * * When an isolate is no longer used its resources should be freed * by calling Dispose(). Using the delete operator is not allowed. * * V8::Initialize() must have run prior to this. */ static Isolate* Allocate(); /** * Initialize an Isolate previously allocated by Isolate::Allocate(). */ static void Initialize(Isolate* isolate, const CreateParams& params); /** * Creates a new isolate. Does not change the currently entered * isolate. * * When an isolate is no longer used its resources should be freed * by calling Dispose(). Using the delete operator is not allowed. * * V8::Initialize() must have run prior to this. */ static Isolate* New(const CreateParams& params); /** * Returns the entered isolate for the current thread or NULL in * case there is no current isolate. * * This method must not be invoked before V8::Initialize() was invoked. */ static Isolate* GetCurrent(); /** * Returns the entered isolate for the current thread or NULL in * case there is no current isolate. * * No checks are performed by this method. */ static Isolate* TryGetCurrent(); /** * Clears the set of objects held strongly by the heap. This set of * objects are originally built when a WeakRef is created or * successfully dereferenced. * * This is invoked automatically after microtasks are run. See * MicrotasksPolicy for when microtasks are run. * * This needs to be manually invoked only if the embedder is manually running * microtasks via a custom MicrotaskQueue class's PerformCheckpoint. In that * case, it is the embedder's responsibility to make this call at a time which * does not interrupt synchronous ECMAScript code execution. */ void ClearKeptObjects(); /** * Custom callback used by embedders to help V8 determine if it should abort * when it throws and no internal handler is predicted to catch the * exception. If --abort-on-uncaught-exception is used on the command line, * then V8 will abort if either: * - no custom callback is set. * - the custom callback set returns true. * Otherwise, the custom callback will not be called and V8 will not abort. */ using AbortOnUncaughtExceptionCallback = bool (*)(Isolate*); void SetAbortOnUncaughtExceptionCallback( AbortOnUncaughtExceptionCallback callback); /** * This specifies the callback called by the upcoming dynamic * import() language feature to load modules. */ V8_DEPRECATED( "Use the version of SetHostImportModuleDynamicallyCallback that takes a " "HostImportModuleDynamicallyWithImportAssertionsCallback instead") void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyCallback callback); /** * This specifies the callback called by the upcoming dynamic * import() language feature to load modules. */ void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyWithImportAssertionsCallback callback); /** * This specifies the callback called by the upcoming import.meta * language feature to retrieve host-defined meta data for a module. */ void SetHostInitializeImportMetaObjectCallback( HostInitializeImportMetaObjectCallback callback); /** * This specifies the callback called when the stack property of Error * is accessed. */ void SetPrepareStackTraceCallback(PrepareStackTraceCallback callback); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to guide heuristics. * It is allowed to call this function from another thread while * the isolate is executing long running JavaScript code. */ void MemoryPressureNotification(MemoryPressureLevel level); /** * Drop non-essential caches. Should only be called from testing code. * The method can potentially block for a long time and does not necessarily * trigger GC. */ void ClearCachesForTesting(); /** * Methods below this point require holding a lock (using Locker) in * a multi-threaded environment. */ /** * Sets this isolate as the entered one for the current thread. * Saves the previously entered one (if any), so that it can be * restored when exiting. Re-entering an isolate is allowed. */ void Enter(); /** * Exits this isolate by restoring the previously entered one in the * current thread. The isolate may still stay the same, if it was * entered more than once. * * Requires: this == Isolate::GetCurrent(). */ void Exit(); /** * Disposes the isolate. The isolate must not be entered by any * thread to be disposable. */ void Dispose(); /** * Dumps activated low-level V8 internal stats. This can be used instead * of performing a full isolate disposal. */ void DumpAndResetStats(); /** * Discards all V8 thread-specific data for the Isolate. Should be used * if a thread is terminating and it has used an Isolate that will outlive * the thread -- all thread-specific data for an Isolate is discarded when * an Isolate is disposed so this call is pointless if an Isolate is about * to be Disposed. */ void DiscardThreadSpecificMetadata(); /** * Associate embedder-specific data with the isolate. |slot| has to be * between 0 and GetNumberOfDataSlots() - 1. */ V8_INLINE void SetData(uint32_t slot, void* data); /** * Retrieve embedder-specific data from the isolate. * Returns NULL if SetData has never been called for the given |slot|. */ V8_INLINE void* GetData(uint32_t slot); /** * Returns the maximum number of available embedder data slots. Valid slots * are in the range of 0 - GetNumberOfDataSlots() - 1. */ V8_INLINE static uint32_t GetNumberOfDataSlots(); /** * Return data that was previously attached to the isolate snapshot via * SnapshotCreator, and removes the reference to it. * Repeated call with the same index returns an empty MaybeLocal. */ template <class T> V8_INLINE MaybeLocal<T> GetDataFromSnapshotOnce(size_t index); /** * Get statistics about the heap memory usage. */ void GetHeapStatistics(HeapStatistics* heap_statistics); /** * Returns the number of spaces in the heap. */ size_t NumberOfHeapSpaces(); /** * Get the memory usage of a space in the heap. * * \param space_statistics The HeapSpaceStatistics object to fill in * statistics. * \param index The index of the space to get statistics from, which ranges * from 0 to NumberOfHeapSpaces() - 1. * \returns true on success. */ bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics, size_t index); /** * Returns the number of types of objects tracked in the heap at GC. */ size_t NumberOfTrackedHeapObjectTypes(); /** * Get statistics about objects in the heap. * * \param object_statistics The HeapObjectStatistics object to fill in * statistics of objects of given type, which were live in the previous GC. * \param type_index The index of the type of object to fill details about, * which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1. * \returns true on success. */ bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics, size_t type_index); /** * Get statistics about code and its metadata in the heap. * * \param object_statistics The HeapCodeStatistics object to fill in * statistics of code, bytecode and their metadata. * \returns true on success. */ bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics); /** * This API is experimental and may change significantly. * * Enqueues a memory measurement request and invokes the delegate with the * results. * * \param delegate the delegate that defines which contexts to measure and * reports the results. * * \param execution promptness executing the memory measurement. * The kEager value is expected to be used only in tests. */ bool MeasureMemory( std::unique_ptr<MeasureMemoryDelegate> delegate, MeasureMemoryExecution execution = MeasureMemoryExecution::kDefault); V8_DEPRECATED("Use the version with a delegate") MaybeLocal<Promise> MeasureMemory(Local<Context> context, MeasureMemoryMode mode); /** * Get a call stack sample from the isolate. * \param state Execution state. * \param frames Caller allocated buffer to store stack frames. * \param frames_limit Maximum number of frames to capture. The buffer must * be large enough to hold the number of frames. * \param sample_info The sample info is filled up by the function * provides number of actual captured stack frames and * the current VM state. * \note GetStackSample should only be called when the JS thread is paused or * interrupted. Otherwise the behavior is undefined. */ void GetStackSample(const RegisterState& state, void** frames, size_t frames_limit, SampleInfo* sample_info); /** * Adjusts the amount of registered external memory. Used to give V8 an * indication of the amount of externally allocated memory that is kept alive * by JavaScript objects. V8 uses this to decide when to perform global * garbage collections. Registering externally allocated memory will trigger * global garbage collections more often than it would otherwise in an attempt * to garbage collect the JavaScript objects that keep the externally * allocated memory alive. * * \param change_in_bytes the change in externally allocated memory that is * kept alive by JavaScript objects. * \returns the adjusted value. */ int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes); /** * Returns the number of phantom handles without callbacks that were reset * by the garbage collector since the last call to this function. */ size_t NumberOfPhantomHandleResetsSinceLastCall(); /** * Returns heap profiler for this isolate. Will return NULL until the isolate * is initialized. */ HeapProfiler* GetHeapProfiler(); /** * Tells the VM whether the embedder is idle or not. */ void SetIdle(bool is_idle); /** Returns the ArrayBuffer::Allocator used in this isolate. */ ArrayBuffer::Allocator* GetArrayBufferAllocator(); /** Returns true if this isolate has a current context. */ bool InContext(); /** * Returns the context of the currently running JavaScript, or the context * on the top of the stack if no JavaScript is running. */ Local<Context> GetCurrentContext(); /** * Returns either the last context entered through V8's C++ API, or the * context of the currently running microtask while processing microtasks. * If a context is entered while executing a microtask, that context is * returned. */ Local<Context> GetEnteredOrMicrotaskContext(); /** * Returns the Context that corresponds to the Incumbent realm in HTML spec. * https://html.spec.whatwg.org/multipage/webappapis.html#incumbent */ Local<Context> GetIncumbentContext(); /** * Schedules a v8::Exception::Error with the given message. * See ThrowException for more details. Templatized to provide compile-time * errors in case of too long strings (see v8::String::NewFromUtf8Literal). */ template <int N> Local<Value> ThrowError(const char (&message)[N]) { return ThrowError(String::NewFromUtf8Literal(this, message)); } Local<Value> ThrowError(Local<String> message); /** * Schedules an exception to be thrown when returning to JavaScript. When an * exception has been scheduled it is illegal to invoke any JavaScript * operation; the caller must return immediately and only after the exception * has been handled does it become legal to invoke JavaScript operations. */ Local<Value> ThrowException(Local<Value> exception); using GCCallback = void (*)(Isolate* isolate, GCType type, GCCallbackFlags flags); using GCCallbackWithData = void (*)(Isolate* isolate, GCType type, GCCallbackFlags flags, void* data); /** * Enables the host application to receive a notification before a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCPrologueCallback(GCCallbackWithData callback, void* data = nullptr, GCType gc_type_filter = kGCTypeAll); void AddGCPrologueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll); /** * This function removes callback which was installed by * AddGCPrologueCallback function. */ void RemoveGCPrologueCallback(GCCallbackWithData, void* data = nullptr); void RemoveGCPrologueCallback(GCCallback callback); /** * Sets the embedder heap tracer for the isolate. */ void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer); /* * Gets the currently active heap tracer for the isolate. */ EmbedderHeapTracer* GetEmbedderHeapTracer(); /** * Sets an embedder roots handle that V8 should consider when performing * non-unified heap garbage collections. * * Using only EmbedderHeapTracer automatically sets up a default handler. * The intended use case is for setting a custom handler after invoking * `AttachCppHeap()`. * * V8 does not take ownership of the handler. */ void SetEmbedderRootsHandler(EmbedderRootsHandler* handler); /** * Attaches a managed C++ heap as an extension to the JavaScript heap. The * embedder maintains ownership of the CppHeap. At most one C++ heap can be * attached to V8. * * This is an experimental feature and may still change significantly. */ void AttachCppHeap(CppHeap*); /** * Detaches a managed C++ heap if one was attached using `AttachCppHeap()`. * * This is an experimental feature and may still change significantly. */ void DetachCppHeap(); /** * This is an experimental feature and may still change significantly. * \returns the C++ heap managed by V8. Only available if such a heap has been * attached using `AttachCppHeap()`. */ CppHeap* GetCppHeap() const; /** * Use for |AtomicsWaitCallback| to indicate the type of event it receives. */ enum class AtomicsWaitEvent { /** Indicates that this call is happening before waiting. */ kStartWait, /** `Atomics.wait()` finished because of an `Atomics.wake()` call. */ kWokenUp, /** `Atomics.wait()` finished because it timed out. */ kTimedOut, /** `Atomics.wait()` was interrupted through |TerminateExecution()|. */ kTerminatedExecution, /** `Atomics.wait()` was stopped through |AtomicsWaitWakeHandle|. */ kAPIStopped, /** `Atomics.wait()` did not wait, as the initial condition was not met. */ kNotEqual }; /** * Passed to |AtomicsWaitCallback| as a means of stopping an ongoing * `Atomics.wait` call. */ class V8_EXPORT AtomicsWaitWakeHandle { public: /** * Stop this `Atomics.wait()` call and call the |AtomicsWaitCallback| * with |kAPIStopped|. * * This function may be called from another thread. The caller has to ensure * through proper synchronization that it is not called after * the finishing |AtomicsWaitCallback|. * * Note that the ECMAScript specification does not plan for the possibility * of wakeups that are neither coming from a timeout or an `Atomics.wake()` * call, so this may invalidate assumptions made by existing code. * The embedder may accordingly wish to schedule an exception in the * finishing |AtomicsWaitCallback|. */ void Wake(); }; /** * Embedder callback for `Atomics.wait()` that can be added through * |SetAtomicsWaitCallback|. * * This will be called just before starting to wait with the |event| value * |kStartWait| and after finishing waiting with one of the other * values of |AtomicsWaitEvent| inside of an `Atomics.wait()` call. * * |array_buffer| will refer to the underlying SharedArrayBuffer, * |offset_in_bytes| to the location of the waited-on memory address inside * the SharedArrayBuffer. * * |value| and |timeout_in_ms| will be the values passed to * the `Atomics.wait()` call. If no timeout was used, |timeout_in_ms| * will be `INFINITY`. * * In the |kStartWait| callback, |stop_handle| will be an object that * is only valid until the corresponding finishing callback and that * can be used to stop the wait process while it is happening. * * This callback may schedule exceptions, *unless* |event| is equal to * |kTerminatedExecution|. */ using AtomicsWaitCallback = void (*)(AtomicsWaitEvent event, Local<SharedArrayBuffer> array_buffer, size_t offset_in_bytes, int64_t value, double timeout_in_ms, AtomicsWaitWakeHandle* stop_handle, void* data); /** * Set a new |AtomicsWaitCallback|. This overrides an earlier * |AtomicsWaitCallback|, if there was any. If |callback| is nullptr, * this unsets the callback. |data| will be passed to the callback * as its last parameter. */ void SetAtomicsWaitCallback(AtomicsWaitCallback callback, void* data); /** * Enables the host application to receive a notification after a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCEpilogueCallback(GCCallbackWithData callback, void* data = nullptr, GCType gc_type_filter = kGCTypeAll); void AddGCEpilogueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll); /** * This function removes callback which was installed by * AddGCEpilogueCallback function. */ void RemoveGCEpilogueCallback(GCCallbackWithData callback, void* data = nullptr); void RemoveGCEpilogueCallback(GCCallback callback); using GetExternallyAllocatedMemoryInBytesCallback = size_t (*)(); /** * Set the callback that tells V8 how much memory is currently allocated * externally of the V8 heap. Ideally this memory is somehow connected to V8 * objects and may get freed-up when the corresponding V8 objects get * collected by a V8 garbage collection. */ void SetGetExternallyAllocatedMemoryInBytesCallback( GetExternallyAllocatedMemoryInBytesCallback callback); /** * Forcefully terminate the current thread of JavaScript execution * in the given isolate. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ void TerminateExecution(); /** * Is V8 terminating JavaScript execution. * * Returns true if JavaScript execution is currently terminating * because of a call to TerminateExecution. In that case there are * still JavaScript frames on the stack and the termination * exception is still active. */ bool IsExecutionTerminating(); /** * Resume execution capability in the given isolate, whose execution * was previously forcefully terminated using TerminateExecution(). * * When execution is forcefully terminated using TerminateExecution(), * the isolate can not resume execution until all JavaScript frames * have propagated the uncatchable exception which is generated. This * method allows the program embedding the engine to handle the * termination event and resume execution capability, even if * JavaScript frames remain on the stack. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ void CancelTerminateExecution(); /** * Request V8 to interrupt long running JavaScript code and invoke * the given |callback| passing the given |data| to it. After |callback| * returns control will be returned to the JavaScript code. * There may be a number of interrupt requests in flight. * Can be called from another thread without acquiring a |Locker|. * Registered |callback| must not reenter interrupted Isolate. */ void RequestInterrupt(InterruptCallback callback, void* data); /** * Returns true if there is ongoing background work within V8 that will * eventually post a foreground task, like asynchronous WebAssembly * compilation. */ bool HasPendingBackgroundTasks(); /** * Request garbage collection in this Isolate. It is only valid to call this * function if --expose_gc was specified. * * This should only be used for testing purposes and not to enforce a garbage * collection schedule. It has strong negative impact on the garbage * collection performance. Use IdleNotificationDeadline() or * LowMemoryNotification() instead to influence the garbage collection * schedule. */ void RequestGarbageCollectionForTesting(GarbageCollectionType type); /** * Set the callback to invoke for logging event. */ void SetEventLogger(LogEventCallback that); /** * Adds a callback to notify the host application right before a script * is about to run. If a script re-enters the runtime during executing, the * BeforeCallEnteredCallback is invoked for each re-entrance. * Executing scripts inside the callback will re-trigger the callback. */ void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); /** * Removes callback that was installed by AddBeforeCallEnteredCallback. */ void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); /** * Adds a callback to notify the host application when a script finished * running. If a script re-enters the runtime during executing, the * CallCompletedCallback is only invoked when the outer-most script * execution ends. Executing scripts inside the callback do not trigger * further callbacks. */ void AddCallCompletedCallback(CallCompletedCallback callback); /** * Removes callback that was installed by AddCallCompletedCallback. */ void RemoveCallCompletedCallback(CallCompletedCallback callback); /** * Set the PromiseHook callback for various promise lifecycle * events. */ void SetPromiseHook(PromiseHook hook); /** * Set callback to notify about promise reject with no handler, or * revocation of such a previous notification once the handler is added. */ void SetPromiseRejectCallback(PromiseRejectCallback callback); /** * Runs the default MicrotaskQueue until it gets empty and perform other * microtask checkpoint steps, such as calling ClearKeptObjects. Asserts that * the MicrotasksPolicy is not kScoped. Any exceptions thrown by microtask * callbacks are swallowed. */ void PerformMicrotaskCheckpoint(); /** * Enqueues the callback to the default MicrotaskQueue */ void EnqueueMicrotask(Local<Function> microtask); /** * Enqueues the callback to the default MicrotaskQueue */ void EnqueueMicrotask(MicrotaskCallback callback, void* data = nullptr); /** * Controls how Microtasks are invoked. See MicrotasksPolicy for details. */ void SetMicrotasksPolicy(MicrotasksPolicy policy); /** * Returns the policy controlling how Microtasks are invoked. */ MicrotasksPolicy GetMicrotasksPolicy() const; /** * Adds a callback to notify the host application after * microtasks were run on the default MicrotaskQueue. The callback is * triggered by explicit RunMicrotasks call or automatic microtasks execution * (see SetMicrotaskPolicy). * * Callback will trigger even if microtasks were attempted to run, * but the microtasks queue was empty and no single microtask was actually * executed. * * Executing scripts inside the callback will not re-trigger microtasks and * the callback. */ void AddMicrotasksCompletedCallback( MicrotasksCompletedCallbackWithData callback, void* data = nullptr); /** * Removes callback that was installed by AddMicrotasksCompletedCallback. */ void RemoveMicrotasksCompletedCallback( MicrotasksCompletedCallbackWithData callback, void* data = nullptr); /** * Sets a callback for counting the number of times a feature of V8 is used. */ void SetUseCounterCallback(UseCounterCallback callback); /** * Enables the host application to provide a mechanism for recording * statistics counters. */ void SetCounterFunction(CounterLookupCallback); /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ void SetCreateHistogramFunction(CreateHistogramCallback); void SetAddHistogramSampleFunction(AddHistogramSampleCallback); /** * Enables the host application to provide a mechanism for recording * event based metrics. In order to use this interface * include/v8-metrics.h * needs to be included and the recorder needs to be derived from the * Recorder base class defined there. * This method can only be called once per isolate and must happen during * isolate initialization before background threads are spawned. */ void SetMetricsRecorder( const std::shared_ptr<metrics::Recorder>& metrics_recorder); /** * Enables the host application to provide a mechanism for recording a * predefined set of data as crash keys to be used in postmortem debugging in * case of a crash. */ void SetAddCrashKeyCallback(AddCrashKeyCallback); /** * Optional notification that the embedder is idle. * V8 uses the notification to perform garbage collection. * This call can be used repeatedly if the embedder remains idle. * Returns true if the embedder should stop calling IdleNotificationDeadline * until real work has been done. This indicates that V8 has done * as much cleanup as it will be able to do. * * The deadline_in_seconds argument specifies the deadline V8 has to finish * garbage collection work. deadline_in_seconds is compared with * MonotonicallyIncreasingTime() and should be based on the same timebase as * that function. There is no guarantee that the actual work will be done * within the time limit. */ bool IdleNotificationDeadline(double deadline_in_seconds); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to attempt to free memory. */ void LowMemoryNotification(); /** * Optional notification that a context has been disposed. V8 uses these * notifications to guide the GC heuristic and cancel FinalizationRegistry * cleanup tasks. Returns the number of context disposals - including this one * - since the last time V8 had a chance to clean up. * * The optional parameter |dependant_context| specifies whether the disposed * context was depending on state from other contexts or not. */ int ContextDisposedNotification(bool dependant_context = true); /** * Optional notification that the isolate switched to the foreground. * V8 uses these notifications to guide heuristics. */ void IsolateInForegroundNotification(); /** * Optional notification that the isolate switched to the background. * V8 uses these notifications to guide heuristics. */ void IsolateInBackgroundNotification(); /** * Optional notification which will enable the memory savings mode. * V8 uses this notification to guide heuristics which may result in a * smaller memory footprint at the cost of reduced runtime performance. */ void EnableMemorySavingsMode(); /** * Optional notification which will disable the memory savings mode. */ void DisableMemorySavingsMode(); /** * Optional notification to tell V8 the current performance requirements * of the embedder based on RAIL. * V8 uses these notifications to guide heuristics. * This is an unfinished experimental feature. Semantics and implementation * may change frequently. */ void SetRAILMode(RAILMode rail_mode); /** * Update load start time of the RAIL mode */ void UpdateLoadStartTime(); /** * Optional notification to tell V8 the current isolate is used for debugging * and requires higher heap limit. */ void IncreaseHeapLimitForDebugging(); /** * Restores the original heap limit after IncreaseHeapLimitForDebugging(). */ void RestoreOriginalHeapLimit(); /** * Returns true if the heap limit was increased for debugging and the * original heap limit was not restored yet. */ bool IsHeapLimitIncreasedForDebugging(); /** * Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. * * \param options options for the JIT code event handler. * \param event_handler the JIT code event handler, which will be invoked * each time code is added, moved or removed. * \note \p event_handler won't get notified of existent code. * \note since code removal notifications are not currently issued, the * \p event_handler may get notifications of code that overlaps earlier * code notifications. This happens when code areas are reused, and the * earlier overlapping code areas should therefore be discarded. * \note the events passed to \p event_handler and the strings they point to * are not guaranteed to live past each call. The \p event_handler must * copy strings and other parameters it needs to keep around. * \note the set of events declared in JitCodeEvent::EventType is expected to * grow over time, and the JitCodeEvent structure is expected to accrue * new members. The \p event_handler function must ignore event codes * it does not recognize to maintain future compatibility. * \note Use Isolate::CreateParams to get events for code executed during * Isolate setup. */ void SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler); /** * Modifies the stack limit for this Isolate. * * \param stack_limit An address beyond which the Vm's stack may not grow. * * \note If you are using threads then you should hold the V8::Locker lock * while setting the stack limit and you must set a non-default stack * limit separately for each thread. */ void SetStackLimit(uintptr_t stack_limit); /** * Returns a memory range that can potentially contain jitted code. Code for * V8's 'builtins' will not be in this range if embedded builtins is enabled. * * On Win64, embedders are advised to install function table callbacks for * these ranges, as default SEH won't be able to unwind through jitted code. * The first page of the code range is reserved for the embedder and is * committed, writable, and executable, to be used to store unwind data, as * documented in * https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64. * * Might be empty on other platforms. * * https://code.google.com/p/v8/issues/detail?id=3598 */ void GetCodeRange(void** start, size_t* length_in_bytes); /** * As GetCodeRange, but for embedded builtins (these live in a distinct * memory region from other V8 Code objects). */ void GetEmbeddedCodeRange(const void** start, size_t* length_in_bytes); /** * Returns the JSEntryStubs necessary for use with the Unwinder API. */ JSEntryStubs GetJSEntryStubs(); static constexpr size_t kMinCodePagesBufferSize = 32; /** * Copies the code heap pages currently in use by V8 into |code_pages_out|. * |code_pages_out| must have at least kMinCodePagesBufferSize capacity and * must be empty. * * Signal-safe, does not allocate, does not access the V8 heap. * No code on the stack can rely on pages that might be missing. * * Returns the number of pages available to be copied, which might be greater * than |capacity|. In this case, only |capacity| pages will be copied into * |code_pages_out|. The caller should provide a bigger buffer on the next * call in order to get all available code pages, but this is not required. */ size_t CopyCodePages(size_t capacity, MemoryRange* code_pages_out); /** Set the callback to invoke in case of fatal errors. */ void SetFatalErrorHandler(FatalErrorCallback that); /** Set the callback to invoke in case of OOM errors. */ void SetOOMErrorHandler(OOMErrorCallback that); /** * Add a callback to invoke in case the heap size is close to the heap limit. * If multiple callbacks are added, only the most recently added callback is * invoked. */ void AddNearHeapLimitCallback(NearHeapLimitCallback callback, void* data); /** * Remove the given callback and restore the heap limit to the * given limit. If the given limit is zero, then it is ignored. * If the current heap size is greater than the given limit, * then the heap limit is restored to the minimal limit that * is possible for the current heap size. */ void RemoveNearHeapLimitCallback(NearHeapLimitCallback callback, size_t heap_limit); /** * If the heap limit was changed by the NearHeapLimitCallback, then the * initial heap limit will be restored once the heap size falls below the * given threshold percentage of the initial heap limit. * The threshold percentage is a number in (0.0, 1.0) range. */ void AutomaticallyRestoreInitialHeapLimit(double threshold_percent = 0.5); /** * Set the callback to invoke to check if code generation from * strings should be allowed. */ V8_DEPRECATED( "Use Isolate::SetModifyCodeGenerationFromStringsCallback with " "ModifyCodeGenerationFromStringsCallback2 instead. See " "http://crbug.com/1096017 and TC39 Dynamic Code Brand Checks proposal " "at https://github.com/tc39/proposal-dynamic-code-brand-checks.") void SetModifyCodeGenerationFromStringsCallback( ModifyCodeGenerationFromStringsCallback callback); void SetModifyCodeGenerationFromStringsCallback( ModifyCodeGenerationFromStringsCallback2 callback); /** * Set the callback to invoke to check if wasm code generation should * be allowed. */ void SetAllowWasmCodeGenerationCallback( AllowWasmCodeGenerationCallback callback); /** * Embedder over{ride|load} injection points for wasm APIs. The expectation * is that the embedder sets them at most once. */ void SetWasmModuleCallback(ExtensionCallback callback); void SetWasmInstanceCallback(ExtensionCallback callback); void SetWasmStreamingCallback(WasmStreamingCallback callback); void SetWasmLoadSourceMapCallback(WasmLoadSourceMapCallback callback); void SetWasmSimdEnabledCallback(WasmSimdEnabledCallback callback); void SetWasmExceptionsEnabledCallback(WasmExceptionsEnabledCallback callback); void SetSharedArrayBufferConstructorEnabledCallback( SharedArrayBufferConstructorEnabledCallback callback); /** * This function can be called by the embedder to signal V8 that the dynamic * enabling of features has finished. V8 can now set up dynamically added * features. */ void InstallConditionalFeatures(Local<Context> context); /** * Check if V8 is dead and therefore unusable. This is the case after * fatal errors such as out-of-memory situations. */ bool IsDead(); /** * Adds a message listener (errors only). * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. */ bool AddMessageListener(MessageCallback that, Local<Value> data = Local<Value>()); /** * Adds a message listener. * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. * * A listener can listen for particular error levels by providing a mask. */ bool AddMessageListenerWithErrorLevel(MessageCallback that, int message_levels, Local<Value> data = Local<Value>()); /** * Remove all message listeners from the specified callback function. */ void RemoveMessageListeners(MessageCallback that); /** Callback function for reporting failed access checks.*/ void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback); /** * Tells V8 to capture current stack trace when uncaught exception occurs * and report it to the message listeners. The option is off by default. */ void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit = 10, StackTrace::StackTraceOptions options = StackTrace::kOverview); /** * Iterates through all external resources referenced from current isolate * heap. GC is not invoked prior to iterating, therefore there is no * guarantee that visited objects are still alive. */ void VisitExternalResources(ExternalResourceVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids. */ void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are weak to be marked as inactive if there is no * pending activity for the handle. */ void VisitWeakHandles(PersistentHandleVisitor* visitor); /** * Check if this isolate is in use. * True if at least one thread Enter'ed this isolate. */ bool IsInUse(); /** * Set whether calling Atomics.wait (a function that may block) is allowed in * this isolate. This can also be configured via * CreateParams::allow_atomics_wait. */ void SetAllowAtomicsWait(bool allow); /** * Time zone redetection indicator for * DateTimeConfigurationChangeNotification. * * kSkip indicates V8 that the notification should not trigger redetecting * host time zone. kRedetect indicates V8 that host time zone should be * redetected, and used to set the default time zone. * * The host time zone detection may require file system access or similar * operations unlikely to be available inside a sandbox. If v8 is run inside a * sandbox, the host time zone has to be detected outside the sandbox before * calling DateTimeConfigurationChangeNotification function. */ enum class TimeZoneDetection { kSkip, kRedetect }; /** * Notification that the embedder has changed the time zone, daylight savings * time or other date / time configuration parameters. V8 keeps a cache of * various values used for date / time computation. This notification will * reset those cached values for the current context so that date / time * configuration changes would be reflected. * * This API should not be called more than needed as it will negatively impact * the performance of date operations. */ void DateTimeConfigurationChangeNotification( TimeZoneDetection time_zone_detection = TimeZoneDetection::kSkip); /** * Notification that the embedder has changed the locale. V8 keeps a cache of * various values used for locale computation. This notification will reset * those cached values for the current context so that locale configuration * changes would be reflected. * * This API should not be called more than needed as it will negatively impact * the performance of locale operations. */ void LocaleConfigurationChangeNotification(); Isolate() = delete; ~Isolate() = delete; Isolate(const Isolate&) = delete; Isolate& operator=(const Isolate&) = delete; // Deleting operator new and delete here is allowed as ctor and dtor is also // deleted. void* operator new(size_t size) = delete; void* operator new[](size_t size) = delete; void operator delete(void*, size_t) = delete; void operator delete[](void*, size_t) = delete; private: template <class K, class V, class Traits> friend class PersistentValueMapBase; internal::Address* GetDataFromSnapshotOnce(size_t index); void ReportExternalAllocationLimitReached(); }; class V8_EXPORT StartupData { public: /** * Whether the data created can be rehashed and and the hash seed can be * recomputed when deserialized. * Only valid for StartupData returned by SnapshotCreator::CreateBlob(). */ bool CanBeRehashed() const; /** * Allows embedders to verify whether the data is valid for the current * V8 instance. */ bool IsValid() const; const char* data; int raw_size; }; /** * EntropySource is used as a callback function when v8 needs a source * of entropy. */ using EntropySource = bool (*)(unsigned char* buffer, size_t length); /** * ReturnAddressLocationResolver is used as a callback function when v8 is * resolving the location of a return address on the stack. Profilers that * change the return address on the stack can use this to resolve the stack * location to wherever the profiler stashed the original return address. * * \param return_addr_location A location on stack where a machine * return address resides. * \returns Either return_addr_location, or else a pointer to the profiler's * copy of the original return address. * * \note The resolver function must not cause garbage collection. */ using ReturnAddressLocationResolver = uintptr_t (*)(uintptr_t return_addr_location); /** * Container class for static utility functions. */ class V8_EXPORT V8 { public: /** * Hand startup data to V8, in case the embedder has chosen to build * V8 with external startup data. * * Note: * - By default the startup data is linked into the V8 library, in which * case this function is not meaningful. * - If this needs to be called, it needs to be called before V8 * tries to make use of its built-ins. * - To avoid unnecessary copies of data, V8 will point directly into the * given data blob, so pretty please keep it around until V8 exit. * - Compression of the startup blob might be useful, but needs to * handled entirely on the embedders' side. * - The call will abort if the data is invalid. */ static void SetSnapshotDataBlob(StartupData* startup_blob); /** Set the callback to invoke in case of Dcheck failures. */ static void SetDcheckErrorHandler(DcheckErrorCallback that); /** * Sets V8 flags from a string. */ static void SetFlagsFromString(const char* str); static void SetFlagsFromString(const char* str, size_t length); /** * Sets V8 flags from the command line. */ static void SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags); /** Get the version string. */ static const char* GetVersion(); /** * Initializes V8. This function needs to be called before the first Isolate * is created. It always returns true. */ V8_INLINE static bool Initialize() { const int kBuildConfiguration = (internal::PointerCompressionIsEnabled() ? kPointerCompression : 0) | (internal::SmiValuesAre31Bits() ? k31BitSmis : 0) | (internal::HeapSandboxIsEnabled() ? kHeapSandbox : 0); return Initialize(kBuildConfiguration); } /** * Allows the host application to provide a callback which can be used * as a source of entropy for random number generators. */ static void SetEntropySource(EntropySource source); /** * Allows the host application to provide a callback that allows v8 to * cooperate with a profiler that rewrites return addresses on stack. */ static void SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver); /** * Releases any resources used by v8 and stops any utility threads * that may be running. Note that disposing v8 is permanent, it * cannot be reinitialized. * * It should generally not be necessary to dispose v8 before exiting * a process, this should happen automatically. It is only necessary * to use if the process needs the resources taken up by v8. */ static bool Dispose(); /** * Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. Returns true on success. * * If V8 was compiled with the ICU data in an external file, the location * of the data file has to be provided. */ static bool InitializeICU(const char* icu_data_file = nullptr); /** * Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. If V8 was compiled with * the ICU data in an external file and when the default location of that * file should be used, a path to the executable must be provided. * Returns true on success. * * The default is a file called icudtl.dat side-by-side with the executable. * * Optionally, the location of the data file can be provided to override the * default. */ static bool InitializeICUDefaultLocation(const char* exec_path, const char* icu_data_file = nullptr); /** * Initialize the external startup data. The embedder only needs to * invoke this method when external startup data was enabled in a build. * * If V8 was compiled with the startup data in an external file, then * V8 needs to be given those external files during startup. There are * three ways to do this: * - InitializeExternalStartupData(const char*) * This will look in the given directory for the file "snapshot_blob.bin". * - InitializeExternalStartupDataFromFile(const char*) * As above, but will directly use the given file name. * - Call SetSnapshotDataBlob. * This will read the blobs from the given data structure and will * not perform any file IO. */ static void InitializeExternalStartupData(const char* directory_path); static void InitializeExternalStartupDataFromFile(const char* snapshot_blob); /** * Sets the v8::Platform to use. This should be invoked before V8 is * initialized. */ static void InitializePlatform(Platform* platform); /** * Clears all references to the v8::Platform. This should be invoked after * V8 was disposed. */ static void ShutdownPlatform(); #if V8_OS_POSIX /** * Give the V8 signal handler a chance to handle a fault. * * This function determines whether a memory access violation can be recovered * by V8. If so, it will return true and modify context to return to a code * fragment that can recover from the fault. Otherwise, TryHandleSignal will * return false. * * The parameters to this function correspond to those passed to a Linux * signal handler. * * \param signal_number The signal number. * * \param info A pointer to the siginfo_t structure provided to the signal * handler. * * \param context The third argument passed to the Linux signal handler, which * points to a ucontext_t structure. */ V8_DEPRECATED("Use TryHandleWebAssemblyTrapPosix") static bool TryHandleSignal(int signal_number, void* info, void* context); #endif // V8_OS_POSIX /** * Activate trap-based bounds checking for WebAssembly. * * \param use_v8_signal_handler Whether V8 should install its own signal * handler or rely on the embedder's. */ static bool EnableWebAssemblyTrapHandler(bool use_v8_signal_handler); #if defined(V8_OS_WIN) /** * On Win64, by default V8 does not emit unwinding data for jitted code, * which means the OS cannot walk the stack frames and the system Structured * Exception Handling (SEH) cannot unwind through V8-generated code: * https://code.google.com/p/v8/issues/detail?id=3598. * * This function allows embedders to register a custom exception handler for * exceptions in V8-generated code. */ static void SetUnhandledExceptionCallback( UnhandledExceptionCallback unhandled_exception_callback); #endif /** * Get statistics about the shared memory usage. */ static void GetSharedMemoryStatistics(SharedMemoryStatistics* statistics); /** * Notifies V8 that the process is cross-origin-isolated, which enables * defining the SharedArrayBuffer function on the global object of Contexts. */ V8_DEPRECATED( "Use the command line argument --enable-sharedarraybuffer-per-context " "together with SetSharedArrayBufferConstructorEnabledCallback") static void SetIsCrossOriginIsolated(); private: V8(); enum BuildConfigurationFeatures { kPointerCompression = 1 << 0, k31BitSmis = 1 << 1, kHeapSandbox = 1 << 2, }; /** * Checks that the embedder build configuration is compatible with * the V8 binary and if so initializes V8. */ static bool Initialize(int build_config); static internal::Address* GlobalizeReference(internal::Isolate* isolate, internal::Address* handle); static internal::Address* GlobalizeTracedReference(internal::Isolate* isolate, internal::Address* handle, internal::Address* slot, bool has_destructor); static void MoveGlobalReference(internal::Address** from, internal::Address** to); static void MoveTracedGlobalReference(internal::Address** from, internal::Address** to); static void CopyTracedGlobalReference(const internal::Address* const* from, internal::Address** to); static internal::Address* CopyGlobalReference(internal::Address* from); static void DisposeGlobal(internal::Address* global_handle); static void DisposeTracedGlobal(internal::Address* global_handle); static void MakeWeak(internal::Address* location, void* data, WeakCallbackInfo<void>::Callback weak_callback, WeakCallbackType type); static void MakeWeak(internal::Address** location_addr); static void* ClearWeak(internal::Address* location); static void SetFinalizationCallbackTraced( internal::Address* location, void* parameter, WeakCallbackInfo<void>::Callback callback); static void AnnotateStrongRetainer(internal::Address* location, const char* label); static Value* Eternalize(Isolate* isolate, Value* handle); template <class K, class V, class T> friend class PersistentValueMapBase; static void FromJustIsNothing(); static void ToLocalEmpty(); static void InternalFieldOutOfBounds(int index); template <class T> friend class BasicTracedReference; template <class T> friend class Global; template <class T> friend class Local; template <class T> friend class MaybeLocal; template <class T> friend class Maybe; template <class T> friend class TracedGlobal; friend class TracedReferenceBase; template <class T> friend class TracedReference; template <class T> friend class WeakCallbackInfo; template <class T> friend class Eternal; template <class T> friend class PersistentBase; template <class T, class M> friend class Persistent; friend class Context; }; /** * Helper class to create a snapshot data blob. * * The Isolate used by a SnapshotCreator is owned by it, and will be entered * and exited by the constructor and destructor, respectively; The destructor * will also destroy the Isolate. Experimental language features, including * those available by default, are not available while creating a snapshot. */ class V8_EXPORT SnapshotCreator { public: enum class FunctionCodeHandling { kClear, kKeep }; /** * Initialize and enter an isolate, and set it up for serialization. * The isolate is either created from scratch or from an existing snapshot. * The caller keeps ownership of the argument snapshot. * \param existing_blob existing snapshot from which to create this one. * \param external_references a null-terminated array of external references * that must be equivalent to CreateParams::external_references. */ SnapshotCreator(Isolate* isolate, const intptr_t* external_references = nullptr, StartupData* existing_blob = nullptr); /** * Create and enter an isolate, and set it up for serialization. * The isolate is either created from scratch or from an existing snapshot. * The caller keeps ownership of the argument snapshot. * \param existing_blob existing snapshot from which to create this one. * \param external_references a null-terminated array of external references * that must be equivalent to CreateParams::external_references. */ SnapshotCreator(const intptr_t* external_references = nullptr, StartupData* existing_blob = nullptr); /** * Destroy the snapshot creator, and exit and dispose of the Isolate * associated with it. */ ~SnapshotCreator(); /** * \returns the isolate prepared by the snapshot creator. */ Isolate* GetIsolate(); /** * Set the default context to be included in the snapshot blob. * The snapshot will not contain the global proxy, and we expect one or a * global object template to create one, to be provided upon deserialization. * * \param callback optional callback to serialize internal fields. */ void SetDefaultContext(Local<Context> context, SerializeInternalFieldsCallback callback = SerializeInternalFieldsCallback()); /** * Add additional context to be included in the snapshot blob. * The snapshot will include the global proxy. * * \param callback optional callback to serialize internal fields. * * \returns the index of the context in the snapshot blob. */ size_t AddContext(Local<Context> context, SerializeInternalFieldsCallback callback = SerializeInternalFieldsCallback()); /** * Attach arbitrary V8::Data to the context snapshot, which can be retrieved * via Context::GetDataFromSnapshot after deserialization. This data does not * survive when a new snapshot is created from an existing snapshot. * \returns the index for retrieval. */ template <class T> V8_INLINE size_t AddData(Local<Context> context, Local<T> object); /** * Attach arbitrary V8::Data to the isolate snapshot, which can be retrieved * via Isolate::GetDataFromSnapshot after deserialization. This data does not * survive when a new snapshot is created from an existing snapshot. * \returns the index for retrieval. */ template <class T> V8_INLINE size_t AddData(Local<T> object); /** * Created a snapshot data blob. * This must not be called from within a handle scope. * \param function_code_handling whether to include compiled function code * in the snapshot. * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The * caller acquires ownership of the data array in the return value. */ StartupData CreateBlob(FunctionCodeHandling function_code_handling); // Disallow copying and assigning. SnapshotCreator(const SnapshotCreator&) = delete; void operator=(const SnapshotCreator&) = delete; private: size_t AddData(Local<Context> context, internal::Address object); size_t AddData(internal::Address object); void* data_; }; /** * A simple Maybe type, representing an object which may or may not have a * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html. * * If an API method returns a Maybe<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, a * "Nothing" value is returned. */ template <class T> class Maybe { public: V8_INLINE bool IsNothing() const { return !has_value_; } V8_INLINE bool IsJust() const { return has_value_; } /** * An alias for |FromJust|. Will crash if the Maybe<> is nothing. */ V8_INLINE T ToChecked() const { return FromJust(); } /** * Short-hand for ToChecked(), which doesn't return a value. To be used, where * the actual value of the Maybe is not needed like Object::Set. */ V8_INLINE void Check() const { if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing(); } /** * Converts this Maybe<> to a value of type T. If this Maybe<> is * nothing (empty), |false| is returned and |out| is left untouched. */ V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const { if (V8_LIKELY(IsJust())) *out = value_; return IsJust(); } /** * Converts this Maybe<> to a value of type T. If this Maybe<> is * nothing (empty), V8 will crash the process. */ V8_INLINE T FromJust() const { if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing(); return value_; } /** * Converts this Maybe<> to a value of type T, using a default value if this * Maybe<> is nothing (empty). */ V8_INLINE T FromMaybe(const T& default_value) const { return has_value_ ? value_ : default_value; } V8_INLINE bool operator==(const Maybe& other) const { return (IsJust() == other.IsJust()) && (!IsJust() || FromJust() == other.FromJust()); } V8_INLINE bool operator!=(const Maybe& other) const { return !operator==(other); } private: Maybe() : has_value_(false) {} explicit Maybe(const T& t) : has_value_(true), value_(t) {} bool has_value_; T value_; template <class U> friend Maybe<U> Nothing(); template <class U> friend Maybe<U> Just(const U& u); }; template <class T> inline Maybe<T> Nothing() { return Maybe<T>(); } template <class T> inline Maybe<T> Just(const T& t) { return Maybe<T>(t); } // A template specialization of Maybe<T> for the case of T = void. template <> class Maybe<void> { public: V8_INLINE bool IsNothing() const { return !is_valid_; } V8_INLINE bool IsJust() const { return is_valid_; } V8_INLINE bool operator==(const Maybe& other) const { return IsJust() == other.IsJust(); } V8_INLINE bool operator!=(const Maybe& other) const { return !operator==(other); } private: struct JustTag {}; Maybe() : is_valid_(false) {} explicit Maybe(JustTag) : is_valid_(true) {} bool is_valid_; template <class U> friend Maybe<U> Nothing(); friend Maybe<void> JustVoid(); }; inline Maybe<void> JustVoid() { return Maybe<void>(Maybe<void>::JustTag()); } /** * An external exception handler. */ class V8_EXPORT TryCatch { public: /** * Creates a new try/catch block and registers it with v8. Note that * all TryCatch blocks should be stack allocated because the memory * location itself is compared against JavaScript try/catch blocks. */ explicit TryCatch(Isolate* isolate); /** * Unregisters and deletes this try/catch block. */ ~TryCatch(); /** * Returns true if an exception has been caught by this try/catch block. */ bool HasCaught() const; /** * For certain types of exceptions, it makes no sense to continue execution. * * If CanContinue returns false, the correct action is to perform any C++ * cleanup needed and then return. If CanContinue returns false and * HasTerminated returns true, it is possible to call * CancelTerminateExecution in order to continue calling into the engine. */ bool CanContinue() const; /** * Returns true if an exception has been caught due to script execution * being terminated. * * There is no JavaScript representation of an execution termination * exception. Such exceptions are thrown when the TerminateExecution * methods are called to terminate a long-running script. * * If such an exception has been thrown, HasTerminated will return true, * indicating that it is possible to call CancelTerminateExecution in order * to continue calling into the engine. */ bool HasTerminated() const; /** * Throws the exception caught by this TryCatch in a way that avoids * it being caught again by this same TryCatch. As with ThrowException * it is illegal to execute any JavaScript operations after calling * ReThrow; the caller must return immediately to where the exception * is caught. */ Local<Value> ReThrow(); /** * Returns the exception caught by this try/catch block. If no exception has * been caught an empty handle is returned. */ Local<Value> Exception() const; /** * Returns the .stack property of an object. If no .stack * property is present an empty handle is returned. */ V8_WARN_UNUSED_RESULT static MaybeLocal<Value> StackTrace( Local<Context> context, Local<Value> exception); /** * Returns the .stack property of the thrown object. If no .stack property is * present or if this try/catch block has not caught an exception, an empty * handle is returned. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace( Local<Context> context) const; /** * Returns the message associated with this exception. If there is * no message associated an empty handle is returned. */ Local<v8::Message> Message() const; /** * Clears any exceptions that may have been caught by this try/catch block. * After this method has been called, HasCaught() will return false. Cancels * the scheduled exception if it is caught and ReThrow() is not called before. * * It is not necessary to clear a try/catch block before using it again; if * another exception is thrown the previously caught exception will just be * overwritten. However, it is often a good idea since it makes it easier * to determine which operation threw a given exception. */ void Reset(); /** * Set verbosity of the external exception handler. * * By default, exceptions that are caught by an external exception * handler are not reported. Call SetVerbose with true on an * external exception handler to have exceptions caught by the * handler reported as if they were not caught. */ void SetVerbose(bool value); /** * Returns true if verbosity is enabled. */ bool IsVerbose() const; /** * Set whether or not this TryCatch should capture a Message object * which holds source information about where the exception * occurred. True by default. */ void SetCaptureMessage(bool value); /** * There are cases when the raw address of C++ TryCatch object cannot be * used for comparisons with addresses into the JS stack. The cases are: * 1) ARM, ARM64 and MIPS simulators which have separate JS stack. * 2) Address sanitizer allocates local C++ object in the heap when * UseAfterReturn mode is enabled. * This method returns address that can be used for comparisons with * addresses into the JS stack. When neither simulator nor ASAN's * UseAfterReturn is enabled, then the address returned will be the address * of the C++ try catch handler itself. */ static void* JSStackComparableAddress(TryCatch* handler) { if (handler == nullptr) return nullptr; return handler->js_stack_comparable_address_; } TryCatch(const TryCatch&) = delete; void operator=(const TryCatch&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); void ResetInternal(); internal::Isolate* isolate_; TryCatch* next_; void* exception_; void* message_obj_; void* js_stack_comparable_address_; bool is_verbose_ : 1; bool can_continue_ : 1; bool capture_message_ : 1; bool rethrow_ : 1; bool has_terminated_ : 1; friend class internal::Isolate; }; // --- Context --- /** * A container for extension names. */ class V8_EXPORT ExtensionConfiguration { public: ExtensionConfiguration() : name_count_(0), names_(nullptr) {} ExtensionConfiguration(int name_count, const char* names[]) : name_count_(name_count), names_(names) { } const char** begin() const { return &names_[0]; } const char** end() const { return &names_[name_count_]; } private: const int name_count_; const char** names_; }; /** * A sandboxed execution context with its own set of built-in objects * and functions. */ class V8_EXPORT Context : public Data { public: /** * Returns the global proxy object. * * Global proxy object is a thin wrapper whose prototype points to actual * context's global object with the properties like Object, etc. This is done * that way for security reasons (for more details see * https://wiki.mozilla.org/Gecko:SplitWindow). * * Please note that changes to global proxy object prototype most probably * would break VM---v8 expects only global object as a prototype of global * proxy object. */ Local<Object> Global(); /** * Detaches the global object from its context before * the global object can be reused to create a new context. */ void DetachGlobal(); /** * Creates a new context and returns a handle to the newly allocated * context. * * \param isolate The isolate in which to create the context. * * \param extensions An optional extension configuration containing * the extensions to be installed in the newly created context. * * \param global_template An optional object template from which the * global object for the newly created context will be created. * * \param global_object An optional global object to be reused for * the newly created context. This global object must have been * created by a previous call to Context::New with the same global * template. The state of the global object will be completely reset * and only object identify will remain. */ static Local<Context> New( Isolate* isolate, ExtensionConfiguration* extensions = nullptr, MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(), MaybeLocal<Value> global_object = MaybeLocal<Value>(), DeserializeInternalFieldsCallback internal_fields_deserializer = DeserializeInternalFieldsCallback(), MicrotaskQueue* microtask_queue = nullptr); /** * Create a new context from a (non-default) context snapshot. There * is no way to provide a global object template since we do not create * a new global object from template, but we can reuse a global object. * * \param isolate See v8::Context::New. * * \param context_snapshot_index The index of the context snapshot to * deserialize from. Use v8::Context::New for the default snapshot. * * \param embedder_fields_deserializer Optional callback to deserialize * internal fields. It should match the SerializeInternalFieldCallback used * to serialize. * * \param extensions See v8::Context::New. * * \param global_object See v8::Context::New. */ static MaybeLocal<Context> FromSnapshot( Isolate* isolate, size_t context_snapshot_index, DeserializeInternalFieldsCallback embedder_fields_deserializer = DeserializeInternalFieldsCallback(), ExtensionConfiguration* extensions = nullptr, MaybeLocal<Value> global_object = MaybeLocal<Value>(), MicrotaskQueue* microtask_queue = nullptr); /** * Returns an global object that isn't backed by an actual context. * * The global template needs to have access checks with handlers installed. * If an existing global object is passed in, the global object is detached * from its context. * * Note that this is different from a detached context where all accesses to * the global proxy will fail. Instead, the access check handlers are invoked. * * It is also not possible to detach an object returned by this method. * Instead, the access check handlers need to return nothing to achieve the * same effect. * * It is possible, however, to create a new context from the global object * returned by this method. */ static MaybeLocal<Object> NewRemoteContext( Isolate* isolate, Local<ObjectTemplate> global_template, MaybeLocal<Value> global_object = MaybeLocal<Value>()); /** * Sets the security token for the context. To access an object in * another context, the security tokens must match. */ void SetSecurityToken(Local<Value> token); /** Restores the security token to the default value. */ void UseDefaultSecurityToken(); /** Returns the security token of this context.*/ Local<Value> GetSecurityToken(); /** * Enter this context. After entering a context, all code compiled * and run is compiled and run in this context. If another context * is already entered, this old context is saved so it can be * restored when the new context is exited. */ void Enter(); /** * Exit this context. Exiting the current context restores the * context that was in place when entering the current context. */ void Exit(); /** Returns the isolate associated with a current context. */ Isolate* GetIsolate(); /** Returns the microtask queue associated with a current context. */ MicrotaskQueue* GetMicrotaskQueue(); /** * The field at kDebugIdIndex used to be reserved for the inspector. * It now serves no purpose. */ enum EmbedderDataFields { kDebugIdIndex = 0 }; /** * Return the number of fields allocated for embedder data. */ uint32_t GetNumberOfEmbedderDataFields(); /** * Gets the embedder data with the given index, which must have been set by a * previous call to SetEmbedderData with the same index. */ V8_INLINE Local<Value> GetEmbedderData(int index); /** * Gets the binding object used by V8 extras. Extra natives get a reference * to this object and can use it to "export" functionality by adding * properties. Extra natives can also "import" functionality by accessing * properties added by the embedder using the V8 API. */ Local<Object> GetExtrasBindingObject(); /** * Sets the embedder data with the given index, growing the data as * needed. Note that index 0 currently has a special meaning for Chrome's * debugger. */ void SetEmbedderData(int index, Local<Value> value); /** * Gets a 2-byte-aligned native pointer from the embedder data with the given * index, which must have been set by a previous call to * SetAlignedPointerInEmbedderData with the same index. Note that index 0 * currently has a special meaning for Chrome's debugger. */ V8_INLINE void* GetAlignedPointerFromEmbedderData(int index); /** * Sets a 2-byte-aligned native pointer in the embedder data with the given * index, growing the data as needed. Note that index 0 currently has a * special meaning for Chrome's debugger. */ void SetAlignedPointerInEmbedderData(int index, void* value); /** * Control whether code generation from strings is allowed. Calling * this method with false will disable 'eval' and the 'Function' * constructor for code running in this context. If 'eval' or the * 'Function' constructor are used an exception will be thrown. * * If code generation from strings is not allowed the * V8::AllowCodeGenerationFromStrings callback will be invoked if * set before blocking the call to 'eval' or the 'Function' * constructor. If that callback returns true, the call will be * allowed, otherwise an exception will be thrown. If no callback is * set an exception will be thrown. */ void AllowCodeGenerationFromStrings(bool allow); /** * Returns true if code generation from strings is allowed for the context. * For more details see AllowCodeGenerationFromStrings(bool) documentation. */ bool IsCodeGenerationFromStringsAllowed(); /** * Sets the error description for the exception that is thrown when * code generation from strings is not allowed and 'eval' or the 'Function' * constructor are called. */ void SetErrorMessageForCodeGenerationFromStrings(Local<String> message); /** * Return data that was previously attached to the context snapshot via * SnapshotCreator, and removes the reference to it. * Repeated call with the same index returns an empty MaybeLocal. */ template <class T> V8_INLINE MaybeLocal<T> GetDataFromSnapshotOnce(size_t index); /** * If callback is set, abort any attempt to execute JavaScript in this * context, call the specified callback, and throw an exception. * To unset abort, pass nullptr as callback. */ using AbortScriptExecutionCallback = void (*)(Isolate* isolate, Local<Context> context); void SetAbortScriptExecution(AbortScriptExecutionCallback callback); /** * Returns the value that was set or restored by * SetContinuationPreservedEmbedderData(), if any. */ Local<Value> GetContinuationPreservedEmbedderData() const; /** * Sets a value that will be stored on continuations and reset while the * continuation runs. */ void SetContinuationPreservedEmbedderData(Local<Value> context); /** * Set or clear hooks to be invoked for promise lifecycle operations. * To clear a hook, set it to an empty v8::Function. Each function will * receive the observed promise as the first argument. If a chaining * operation is used on a promise, the init will additionally receive * the parent promise as the second argument. */ void SetPromiseHooks(Local<Function> init_hook, Local<Function> before_hook, Local<Function> after_hook, Local<Function> resolve_hook); /** * Stack-allocated class which sets the execution context for all * operations executed within a local scope. */ class V8_NODISCARD Scope { public: explicit V8_INLINE Scope(Local<Context> context) : context_(context) { context_->Enter(); } V8_INLINE ~Scope() { context_->Exit(); } private: Local<Context> context_; }; /** * Stack-allocated class to support the backup incumbent settings object * stack. * https://html.spec.whatwg.org/multipage/webappapis.html#backup-incumbent-settings-object-stack */ class V8_EXPORT V8_NODISCARD BackupIncumbentScope final { public: /** * |backup_incumbent_context| is pushed onto the backup incumbent settings * object stack. */ explicit BackupIncumbentScope(Local<Context> backup_incumbent_context); ~BackupIncumbentScope(); /** * Returns address that is comparable with JS stack address. Note that JS * stack may be allocated separately from the native stack. See also * |TryCatch::JSStackComparableAddress| for details. */ uintptr_t JSStackComparableAddress() const { return js_stack_comparable_address_; } private: friend class internal::Isolate; Local<Context> backup_incumbent_context_; uintptr_t js_stack_comparable_address_ = 0; const BackupIncumbentScope* prev_ = nullptr; }; V8_INLINE static Context* Cast(Data* data); private: friend class Value; friend class Script; friend class Object; friend class Function; static void CheckCast(Data* obj); internal::Address* GetDataFromSnapshotOnce(size_t index); Local<Value> SlowGetEmbedderData(int index); void* SlowGetAlignedPointerFromEmbedderData(int index); }; /** * Multiple threads in V8 are allowed, but only one thread at a time is allowed * to use any given V8 isolate, see the comments in the Isolate class. The * definition of 'using a V8 isolate' includes accessing handles or holding onto * object pointers obtained from V8 handles while in the particular V8 isolate. * It is up to the user of V8 to ensure, perhaps with locking, that this * constraint is not violated. In addition to any other synchronization * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be * used to signal thread switches to V8. * * v8::Locker is a scoped lock object. While it's active, i.e. between its * construction and destruction, the current thread is allowed to use the locked * isolate. V8 guarantees that an isolate can be locked by at most one thread at * any time. In other words, the scope of a v8::Locker is a critical section. * * Sample usage: * \code * ... * { * v8::Locker locker(isolate); * v8::Isolate::Scope isolate_scope(isolate); * ... * // Code using V8 and isolate goes here. * ... * } // Destructor called here * \endcode * * If you wish to stop using V8 in a thread A you can do this either by * destroying the v8::Locker object as above or by constructing a v8::Unlocker * object: * * \code * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * ... * // Code not using V8 goes here while V8 can run in another thread. * ... * } // Destructor called here. * isolate->Enter(); * \endcode * * The Unlocker object is intended for use in a long-running callback from V8, * where you want to release the V8 lock for other threads to use. * * The v8::Locker is a recursive lock, i.e. you can lock more than once in a * given thread. This can be useful if you have code that can be called either * from code that holds the lock or from code that does not. The Unlocker is * not recursive so you can not have several Unlockers on the stack at once, and * you can not use an Unlocker in a thread that is not inside a Locker's scope. * * An unlocker will unlock several lockers if it has to and reinstate the * correct depth of locking on its destruction, e.g.: * * \code * // V8 not locked. * { * v8::Locker locker(isolate); * Isolate::Scope isolate_scope(isolate); * // V8 locked. * { * v8::Locker another_locker(isolate); * // V8 still locked (2 levels). * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * // V8 not locked. * } * isolate->Enter(); * // V8 locked again (2 levels). * } * // V8 still locked (1 level). * } * // V8 Now no longer locked. * \endcode */ class V8_EXPORT Unlocker { public: /** * Initialize Unlocker for a given Isolate. */ V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); } ~Unlocker(); private: void Initialize(Isolate* isolate); internal::Isolate* isolate_; }; class V8_EXPORT Locker { public: /** * Initialize Locker for a given Isolate. */ V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); } ~Locker(); /** * Returns whether or not the locker for a given isolate, is locked by the * current thread. */ static bool IsLocked(Isolate* isolate); /** * Returns whether v8::Locker is being used by this V8 instance. */ static bool IsActive(); // Disallow copying and assigning. Locker(const Locker&) = delete; void operator=(const Locker&) = delete; private: void Initialize(Isolate* isolate); bool has_lock_; bool top_level_; internal::Isolate* isolate_; }; /** * Various helpers for skipping over V8 frames in a given stack. * * The unwinder API is only supported on the x64, ARM64 and ARM32 architectures. */ class V8_EXPORT Unwinder { public: /** * Attempt to unwind the stack to the most recent C++ frame. This function is * signal-safe and does not access any V8 state and thus doesn't require an * Isolate. * * The unwinder needs to know the location of the JS Entry Stub (a piece of * code that is run when C++ code calls into generated JS code). This is used * for edge cases where the current frame is being constructed or torn down * when the stack sample occurs. * * The unwinder also needs the virtual memory range of all possible V8 code * objects. There are two ranges required - the heap code range and the range * for code embedded in the binary. * * Available on x64, ARM64 and ARM32. * * \param code_pages A list of all of the ranges in which V8 has allocated * executable code. The caller should obtain this list by calling * Isolate::CopyCodePages() during the same interrupt/thread suspension that * captures the stack. * \param register_state The current registers. This is an in-out param that * will be overwritten with the register values after unwinding, on success. * \param stack_base The resulting stack pointer and frame pointer values are * bounds-checked against the stack_base and the original stack pointer value * to ensure that they are valid locations in the given stack. If these values * or any intermediate frame pointer values used during unwinding are ever out * of these bounds, unwinding will fail. * * \return True on success. */ static bool TryUnwindV8Frames(const JSEntryStubs& entry_stubs, size_t code_pages_length, const MemoryRange* code_pages, RegisterState* register_state, const void* stack_base); /** * Whether the PC is within the V8 code range represented by code_pages. * * If this returns false, then calling UnwindV8Frames() with the same PC * and unwind_state will always fail. If it returns true, then unwinding may * (but not necessarily) be successful. * * Available on x64, ARM64 and ARM32 */ static bool PCIsInV8(size_t code_pages_length, const MemoryRange* code_pages, void* pc); }; // --- Implementation --- template <class T> Local<T> Local<T>::New(Isolate* isolate, Local<T> that) { return New(isolate, that.val_); } template <class T> Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) { return New(isolate, that.val_); } template <class T> Local<T> Local<T>::New(Isolate* isolate, const BasicTracedReference<T>& that) { return New(isolate, *that); } template <class T> Local<T> Local<T>::New(Isolate* isolate, T* that) { if (that == nullptr) return Local<T>(); T* that_ptr = that; internal::Address* p = reinterpret_cast<internal::Address*>(that_ptr); return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( reinterpret_cast<internal::Isolate*>(isolate), *p))); } template<class T> template<class S> void Eternal<T>::Set(Isolate* isolate, Local<S> handle) { static_assert(std::is_base_of<T, S>::value, "type check"); val_ = reinterpret_cast<T*>( V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle))); } template <class T> Local<T> Eternal<T>::Get(Isolate* isolate) const { // The eternal handle will never go away, so as with the roots, we don't even // need to open a handle. return Local<T>(val_); } template <class T> Local<T> MaybeLocal<T>::ToLocalChecked() { if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty(); return Local<T>(val_); } template <class T> void* WeakCallbackInfo<T>::GetInternalField(int index) const { #ifdef V8_ENABLE_CHECKS if (index < 0 || index >= kEmbedderFieldsInWeakCallback) { V8::InternalFieldOutOfBounds(index); } #endif return embedder_fields_[index]; } template <class T> T* PersistentBase<T>::New(Isolate* isolate, T* that) { if (that == nullptr) return nullptr; internal::Address* p = reinterpret_cast<internal::Address*>(that); return reinterpret_cast<T*>( V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate), p)); } template <class T, class M> template <class S, class M2> void Persistent<T, M>::Copy(const Persistent<S, M2>& that) { static_assert(std::is_base_of<T, S>::value, "type check"); this->Reset(); if (that.IsEmpty()) return; internal::Address* p = reinterpret_cast<internal::Address*>(that.val_); this->val_ = reinterpret_cast<T*>(V8::CopyGlobalReference(p)); M::Copy(that, this); } template <class T> bool PersistentBase<T>::IsWeak() const { using I = internal::Internals; if (this->IsEmpty()) return false; return I::GetNodeState(reinterpret_cast<internal::Address*>(this->val_)) == I::kNodeStateIsWeakValue; } template <class T> void PersistentBase<T>::Reset() { if (this->IsEmpty()) return; V8::DisposeGlobal(reinterpret_cast<internal::Address*>(this->val_)); val_ = nullptr; } template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) { static_assert(std::is_base_of<T, S>::value, "type check"); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); } template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const PersistentBase<S>& other) { static_assert(std::is_base_of<T, S>::value, "type check"); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); } template <class T> template <typename P> V8_INLINE void PersistentBase<T>::SetWeak( P* parameter, typename WeakCallbackInfo<P>::Callback callback, WeakCallbackType type) { using Callback = WeakCallbackInfo<void>::Callback; #if (__GNUC__ >= 8) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-function-type" #endif V8::MakeWeak(reinterpret_cast<internal::Address*>(this->val_), parameter, reinterpret_cast<Callback>(callback), type); #if (__GNUC__ >= 8) && !defined(__clang__) #pragma GCC diagnostic pop #endif } template <class T> void PersistentBase<T>::SetWeak() { V8::MakeWeak(reinterpret_cast<internal::Address**>(&this->val_)); } template <class T> template <typename P> P* PersistentBase<T>::ClearWeak() { return reinterpret_cast<P*>( V8::ClearWeak(reinterpret_cast<internal::Address*>(this->val_))); } template <class T> void PersistentBase<T>::AnnotateStrongRetainer(const char* label) { V8::AnnotateStrongRetainer(reinterpret_cast<internal::Address*>(this->val_), label); } template <class T> void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) { using I = internal::Internals; if (this->IsEmpty()) return; internal::Address* obj = reinterpret_cast<internal::Address*>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; *reinterpret_cast<uint16_t*>(addr) = class_id; } template <class T> uint16_t PersistentBase<T>::WrapperClassId() const { using I = internal::Internals; if (this->IsEmpty()) return 0; internal::Address* obj = reinterpret_cast<internal::Address*>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; return *reinterpret_cast<uint16_t*>(addr); } template <class T> Global<T>::Global(Global&& other) : PersistentBase<T>(other.val_) { if (other.val_ != nullptr) { V8::MoveGlobalReference(reinterpret_cast<internal::Address**>(&other.val_), reinterpret_cast<internal::Address**>(&this->val_)); other.val_ = nullptr; } } template <class T> template <class S> Global<T>& Global<T>::operator=(Global<S>&& rhs) { static_assert(std::is_base_of<T, S>::value, "type check"); if (this != &rhs) { this->Reset(); if (rhs.val_ != nullptr) { this->val_ = rhs.val_; V8::MoveGlobalReference( reinterpret_cast<internal::Address**>(&rhs.val_), reinterpret_cast<internal::Address**>(&this->val_)); rhs.val_ = nullptr; } } return *this; } template <class T> internal::Address* BasicTracedReference<T>::New( Isolate* isolate, T* that, void* slot, DestructionMode destruction_mode) { if (that == nullptr) return nullptr; internal::Address* p = reinterpret_cast<internal::Address*>(that); return V8::GlobalizeTracedReference( reinterpret_cast<internal::Isolate*>(isolate), p, reinterpret_cast<internal::Address*>(slot), destruction_mode == kWithDestructor); } void TracedReferenceBase::Reset() { if (IsEmpty()) return; V8::DisposeTracedGlobal(reinterpret_cast<internal::Address*>(val_)); SetSlotThreadSafe(nullptr); } v8::Local<v8::Value> TracedReferenceBase::Get(v8::Isolate* isolate) const { if (IsEmpty()) return Local<Value>(); return Local<Value>::New(isolate, reinterpret_cast<Value*>(val_)); } V8_INLINE bool operator==(const TracedReferenceBase& lhs, const TracedReferenceBase& rhs) { v8::internal::Address* a = reinterpret_cast<v8::internal::Address*>(lhs.val_); v8::internal::Address* b = reinterpret_cast<v8::internal::Address*>(rhs.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } template <typename U> V8_INLINE bool operator==(const TracedReferenceBase& lhs, const v8::Local<U>& rhs) { v8::internal::Address* a = reinterpret_cast<v8::internal::Address*>(lhs.val_); v8::internal::Address* b = reinterpret_cast<v8::internal::Address*>(*rhs); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } template <typename U> V8_INLINE bool operator==(const v8::Local<U>& lhs, const TracedReferenceBase& rhs) { return rhs == lhs; } V8_INLINE bool operator!=(const TracedReferenceBase& lhs, const TracedReferenceBase& rhs) { return !(lhs == rhs); } template <typename U> V8_INLINE bool operator!=(const TracedReferenceBase& lhs, const v8::Local<U>& rhs) { return !(lhs == rhs); } template <typename U> V8_INLINE bool operator!=(const v8::Local<U>& lhs, const TracedReferenceBase& rhs) { return !(rhs == lhs); } template <class T> template <class S> void TracedGlobal<T>::Reset(Isolate* isolate, const Local<S>& other) { static_assert(std::is_base_of<T, S>::value, "type check"); Reset(); if (other.IsEmpty()) return; this->val_ = this->New(isolate, other.val_, &this->val_, BasicTracedReference<T>::kWithDestructor); } template <class T> template <class S> TracedGlobal<T>& TracedGlobal<T>::operator=(TracedGlobal<S>&& rhs) { static_assert(std::is_base_of<T, S>::value, "type check"); *this = std::move(rhs.template As<T>()); return *this; } template <class T> template <class S> TracedGlobal<T>& TracedGlobal<T>::operator=(const TracedGlobal<S>& rhs) { static_assert(std::is_base_of<T, S>::value, "type check"); *this = rhs.template As<T>(); return *this; } template <class T> TracedGlobal<T>& TracedGlobal<T>::operator=(TracedGlobal&& rhs) { if (this != &rhs) { V8::MoveTracedGlobalReference( reinterpret_cast<internal::Address**>(&rhs.val_), reinterpret_cast<internal::Address**>(&this->val_)); } return *this; } template <class T> TracedGlobal<T>& TracedGlobal<T>::operator=(const TracedGlobal& rhs) { if (this != &rhs) { this->Reset(); if (rhs.val_ != nullptr) { V8::CopyTracedGlobalReference( reinterpret_cast<const internal::Address* const*>(&rhs.val_), reinterpret_cast<internal::Address**>(&this->val_)); } } return *this; } template <class T> template <class S> void TracedReference<T>::Reset(Isolate* isolate, const Local<S>& other) { static_assert(std::is_base_of<T, S>::value, "type check"); this->Reset(); if (other.IsEmpty()) return; this->SetSlotThreadSafe( this->New(isolate, other.val_, &this->val_, BasicTracedReference<T>::kWithoutDestructor)); } template <class T> template <class S> TracedReference<T>& TracedReference<T>::operator=(TracedReference<S>&& rhs) { static_assert(std::is_base_of<T, S>::value, "type check"); *this = std::move(rhs.template As<T>()); return *this; } template <class T> template <class S> TracedReference<T>& TracedReference<T>::operator=( const TracedReference<S>& rhs) { static_assert(std::is_base_of<T, S>::value, "type check"); *this = rhs.template As<T>(); return *this; } template <class T> TracedReference<T>& TracedReference<T>::operator=(TracedReference&& rhs) { if (this != &rhs) { V8::MoveTracedGlobalReference( reinterpret_cast<internal::Address**>(&rhs.val_), reinterpret_cast<internal::Address**>(&this->val_)); } return *this; } template <class T> TracedReference<T>& TracedReference<T>::operator=(const TracedReference& rhs) { if (this != &rhs) { this->Reset(); if (rhs.val_ != nullptr) { V8::CopyTracedGlobalReference( reinterpret_cast<const internal::Address* const*>(&rhs.val_), reinterpret_cast<internal::Address**>(&this->val_)); } } return *this; } void TracedReferenceBase::SetWrapperClassId(uint16_t class_id) { using I = internal::Internals; if (IsEmpty()) return; internal::Address* obj = reinterpret_cast<internal::Address*>(val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; *reinterpret_cast<uint16_t*>(addr) = class_id; } uint16_t TracedReferenceBase::WrapperClassId() const { using I = internal::Internals; if (IsEmpty()) return 0; internal::Address* obj = reinterpret_cast<internal::Address*>(val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; return *reinterpret_cast<uint16_t*>(addr); } template <class T> void TracedGlobal<T>::SetFinalizationCallback( void* parameter, typename WeakCallbackInfo<void>::Callback callback) { V8::SetFinalizationCallbackTraced( reinterpret_cast<internal::Address*>(this->val_), parameter, callback); } template <typename T> ReturnValue<T>::ReturnValue(internal::Address* slot) : value_(slot) {} template <typename T> template <typename S> void ReturnValue<T>::Set(const Global<S>& handle) { static_assert(std::is_base_of<T, S>::value, "type check"); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Address*>(*handle); } } template <typename T> template <typename S> void ReturnValue<T>::Set(const BasicTracedReference<S>& handle) { static_assert(std::is_base_of<T, S>::value, "type check"); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Address*>(handle.val_); } } template <typename T> template <typename S> void ReturnValue<T>::Set(const Local<S> handle) { static_assert(std::is_void<T>::value || std::is_base_of<T, S>::value, "type check"); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Address*>(*handle); } } template<typename T> void ReturnValue<T>::Set(double i) { static_assert(std::is_base_of<T, Number>::value, "type check"); Set(Number::New(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(int32_t i) { static_assert(std::is_base_of<T, Integer>::value, "type check"); using I = internal::Internals; if (V8_LIKELY(I::IsValidSmi(i))) { *value_ = I::IntToSmi(i); return; } Set(Integer::New(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(uint32_t i) { static_assert(std::is_base_of<T, Integer>::value, "type check"); // Can't simply use INT32_MAX here for whatever reason. bool fits_into_int32_t = (i & (1U << 31)) == 0; if (V8_LIKELY(fits_into_int32_t)) { Set(static_cast<int32_t>(i)); return; } Set(Integer::NewFromUnsigned(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(bool value) { static_assert(std::is_base_of<T, Boolean>::value, "type check"); using I = internal::Internals; int root_index; if (value) { root_index = I::kTrueValueRootIndex; } else { root_index = I::kFalseValueRootIndex; } *value_ = *I::GetRoot(GetIsolate(), root_index); } template<typename T> void ReturnValue<T>::SetNull() { static_assert(std::is_base_of<T, Primitive>::value, "type check"); using I = internal::Internals; *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex); } template<typename T> void ReturnValue<T>::SetUndefined() { static_assert(std::is_base_of<T, Primitive>::value, "type check"); using I = internal::Internals; *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex); } template<typename T> void ReturnValue<T>::SetEmptyString() { static_assert(std::is_base_of<T, String>::value, "type check"); using I = internal::Internals; *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex); } template <typename T> Isolate* ReturnValue<T>::GetIsolate() const { // Isolate is always the pointer below the default value on the stack. return *reinterpret_cast<Isolate**>(&value_[-2]); } template <typename T> Local<Value> ReturnValue<T>::Get() const { using I = internal::Internals; if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex)) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_)); } template <typename T> template <typename S> void ReturnValue<T>::Set(S* whatever) { static_assert(sizeof(S) < 0, "incompilable to prevent inadvertent misuse"); } template <typename T> internal::Address ReturnValue<T>::GetDefaultValue() { // Default value is always the pointer below value_ on the stack. return value_[-1]; } template <typename T> FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Address* implicit_args, internal::Address* values, int length) : implicit_args_(implicit_args), values_(values), length_(length) {} template<typename T> Local<Value> FunctionCallbackInfo<T>::operator[](int i) const { // values_ points to the first argument (not the receiver). if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>(reinterpret_cast<Value*>(values_ + i)); } template<typename T> Local<Object> FunctionCallbackInfo<T>::This() const { // values_ points to the first argument (not the receiver). return Local<Object>(reinterpret_cast<Object*>(values_ - 1)); } template<typename T> Local<Object> FunctionCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>( &implicit_args_[kHolderIndex])); } template <typename T> Local<Value> FunctionCallbackInfo<T>::NewTarget() const { return Local<Value>( reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex])); } template <typename T> Local<Value> FunctionCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex])); } template<typename T> Isolate* FunctionCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]); } template<typename T> ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&implicit_args_[kReturnValueIndex]); } template<typename T> bool FunctionCallbackInfo<T>::IsConstructCall() const { return !NewTarget()->IsUndefined(); } template<typename T> int FunctionCallbackInfo<T>::Length() const { return length_; } ScriptOrigin::ScriptOrigin( Local<Value> resource_name, Local<Integer> line_offset, Local<Integer> column_offset, Local<Boolean> is_shared_cross_origin, Local<Integer> script_id, Local<Value> source_map_url, Local<Boolean> is_opaque, Local<Boolean> is_wasm, Local<Boolean> is_module, Local<PrimitiveArray> host_defined_options) : ScriptOrigin( Isolate::GetCurrent(), resource_name, line_offset.IsEmpty() ? 0 : static_cast<int>(line_offset->Value()), column_offset.IsEmpty() ? 0 : static_cast<int>(column_offset->Value()), !is_shared_cross_origin.IsEmpty() && is_shared_cross_origin->IsTrue(), static_cast<int>(script_id.IsEmpty() ? -1 : script_id->Value()), source_map_url, !is_opaque.IsEmpty() && is_opaque->IsTrue(), !is_wasm.IsEmpty() && is_wasm->IsTrue(), !is_module.IsEmpty() && is_module->IsTrue(), host_defined_options) {} ScriptOrigin::ScriptOrigin(Local<Value> resource_name, int line_offset, int column_offset, bool is_shared_cross_origin, int script_id, Local<Value> source_map_url, bool is_opaque, bool is_wasm, bool is_module, Local<PrimitiveArray> host_defined_options) : isolate_(Isolate::GetCurrent()), resource_name_(resource_name), resource_line_offset_(line_offset), resource_column_offset_(column_offset), options_(is_shared_cross_origin, is_opaque, is_wasm, is_module), script_id_(script_id), source_map_url_(source_map_url), host_defined_options_(host_defined_options) {} ScriptOrigin::ScriptOrigin(Isolate* isolate, Local<Value> resource_name, int line_offset, int column_offset, bool is_shared_cross_origin, int script_id, Local<Value> source_map_url, bool is_opaque, bool is_wasm, bool is_module, Local<PrimitiveArray> host_defined_options) : isolate_(isolate), resource_name_(resource_name), resource_line_offset_(line_offset), resource_column_offset_(column_offset), options_(is_shared_cross_origin, is_opaque, is_wasm, is_module), script_id_(script_id), source_map_url_(source_map_url), host_defined_options_(host_defined_options) {} Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; } Local<PrimitiveArray> ScriptOrigin::HostDefinedOptions() const { return host_defined_options_; } Local<Integer> ScriptOrigin::ResourceLineOffset() const { return v8::Integer::New(isolate_, resource_line_offset_); } Local<Integer> ScriptOrigin::ResourceColumnOffset() const { return v8::Integer::New(isolate_, resource_column_offset_); } Local<Integer> ScriptOrigin::ScriptID() const { return v8::Integer::New(isolate_, script_id_); } int ScriptOrigin::LineOffset() const { return resource_line_offset_; } int ScriptOrigin::ColumnOffset() const { return resource_column_offset_; } int ScriptOrigin::ScriptId() const { return script_id_; } Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; } ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin, CachedData* data) : source_string(string), resource_name(origin.ResourceName()), resource_line_offset(origin.LineOffset()), resource_column_offset(origin.ColumnOffset()), resource_options(origin.Options()), source_map_url(origin.SourceMapUrl()), host_defined_options(origin.HostDefinedOptions()), cached_data(data) {} ScriptCompiler::Source::Source(Local<String> string, CachedData* data) : source_string(string), cached_data(data) {} ScriptCompiler::Source::~Source() { delete cached_data; } const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData() const { return cached_data; } const ScriptOriginOptions& ScriptCompiler::Source::GetResourceOptions() const { return resource_options; } Local<Boolean> Boolean::New(Isolate* isolate, bool value) { return value ? True(isolate) : False(isolate); } void Template::Set(Isolate* isolate, const char* name, Local<Data> value) { Set(String::NewFromUtf8(isolate, name, NewStringType::kInternalized) .ToLocalChecked(), value); } FunctionTemplate* FunctionTemplate::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<FunctionTemplate*>(data); } ObjectTemplate* ObjectTemplate::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<ObjectTemplate*>(data); } Signature* Signature::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<Signature*>(data); } AccessorSignature* AccessorSignature::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<AccessorSignature*>(data); } Local<Value> Object::GetInternalField(int index) { #ifndef V8_ENABLE_CHECKS using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<A*>(this); // Fast path: If the object is a plain JSObject, which is the common case, we // know where to find the internal fields and can return the value directly. auto instance_type = I::GetInstanceType(obj); if (instance_type == I::kJSObjectType || instance_type == I::kJSApiObjectType || instance_type == I::kJSSpecialApiObjectType) { int offset = I::kJSObjectHeaderSize + (I::kEmbedderDataSlotSize * index); A value = I::ReadRawField<A>(obj, offset); #ifdef V8_COMPRESS_POINTERS // We read the full pointer value and then decompress it in order to avoid // dealing with potential endiannes issues. value = I::DecompressTaggedAnyField(obj, static_cast<uint32_t>(value)); #endif internal::Isolate* isolate = internal::IsolateFromNeverReadOnlySpaceObject(obj); A* result = HandleScope::CreateHandle(isolate, value); return Local<Value>(reinterpret_cast<Value*>(result)); } #endif return SlowGetInternalField(index); } void* Object::GetAlignedPointerFromInternalField(int index) { #ifndef V8_ENABLE_CHECKS using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<A*>(this); // Fast path: If the object is a plain JSObject, which is the common case, we // know where to find the internal fields and can return the value directly. auto instance_type = I::GetInstanceType(obj); if (V8_LIKELY(instance_type == I::kJSObjectType || instance_type == I::kJSApiObjectType || instance_type == I::kJSSpecialApiObjectType)) { int offset = I::kJSObjectHeaderSize + (I::kEmbedderDataSlotSize * index); #ifdef V8_HEAP_SANDBOX offset += I::kEmbedderDataSlotRawPayloadOffset; #endif internal::Isolate* isolate = I::GetIsolateForHeapSandbox(obj); A value = I::ReadExternalPointerField( isolate, obj, offset, internal::kEmbedderDataSlotPayloadTag); return reinterpret_cast<void*>(value); } #endif return SlowGetAlignedPointerFromInternalField(index); } String* String::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<String*>(data); } Local<String> String::Empty(Isolate* isolate) { using S = internal::Address; using I = internal::Internals; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex); return Local<String>(reinterpret_cast<String*>(slot)); } String::ExternalStringResource* String::GetExternalStringResource() const { using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<const A*>(this); ExternalStringResource* result; if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) { internal::Isolate* isolate = I::GetIsolateForHeapSandbox(obj); A value = I::ReadExternalPointerField(isolate, obj, I::kStringResourceOffset, internal::kExternalStringResourceTag); result = reinterpret_cast<String::ExternalStringResource*>(value); } else { result = GetExternalStringResourceSlow(); } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResource(result); #endif return result; } String::ExternalStringResourceBase* String::GetExternalStringResourceBase( String::Encoding* encoding_out) const { using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<const A*>(this); int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask; *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask); ExternalStringResourceBase* resource; if (type == I::kExternalOneByteRepresentationTag || type == I::kExternalTwoByteRepresentationTag) { internal::Isolate* isolate = I::GetIsolateForHeapSandbox(obj); A value = I::ReadExternalPointerField(isolate, obj, I::kStringResourceOffset, internal::kExternalStringResourceTag); resource = reinterpret_cast<ExternalStringResourceBase*>(value); } else { resource = GetExternalStringResourceBaseSlow(encoding_out); } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResourceBase(resource, *encoding_out); #endif return resource; } bool Value::IsUndefined() const { #ifdef V8_ENABLE_CHECKS return FullIsUndefined(); #else return QuickIsUndefined(); #endif } bool Value::QuickIsUndefined() const { using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<const A*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kUndefinedOddballKind); } bool Value::IsNull() const { #ifdef V8_ENABLE_CHECKS return FullIsNull(); #else return QuickIsNull(); #endif } bool Value::QuickIsNull() const { using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<const A*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kNullOddballKind); } bool Value::IsNullOrUndefined() const { #ifdef V8_ENABLE_CHECKS return FullIsNull() || FullIsUndefined(); #else return QuickIsNullOrUndefined(); #endif } bool Value::QuickIsNullOrUndefined() const { using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<const A*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; int kind = I::GetOddballKind(obj); return kind == I::kNullOddballKind || kind == I::kUndefinedOddballKind; } bool Value::IsString() const { #ifdef V8_ENABLE_CHECKS return FullIsString(); #else return QuickIsString(); #endif } bool Value::QuickIsString() const { using A = internal::Address; using I = internal::Internals; A obj = *reinterpret_cast<const A*>(this); if (!I::HasHeapObjectTag(obj)) return false; return (I::GetInstanceType(obj) < I::kFirstNonstringType); } template <class T> Value* Value::Cast(T* value) { return static_cast<Value*>(value); } template <> V8_INLINE Value* Value::Cast(Data* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Value*>(value); } Boolean* Boolean::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Boolean*>(data); } Name* Name::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Name*>(data); } Symbol* Symbol::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Symbol*>(data); } Private* Private::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<Private*>(data); } ModuleRequest* ModuleRequest::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<ModuleRequest*>(data); } Module* Module::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<Module*>(data); } Number* Number::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Number*>(data); } Integer* Integer::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Integer*>(data); } Int32* Int32::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Int32*>(data); } Uint32* Uint32::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Uint32*>(data); } BigInt* BigInt::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<BigInt*>(data); } Context* Context::Cast(v8::Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return static_cast<Context*>(data); } Date* Date::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Date*>(value); } StringObject* StringObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<StringObject*>(value); } SymbolObject* SymbolObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<SymbolObject*>(value); } NumberObject* NumberObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<NumberObject*>(value); } BigIntObject* BigIntObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigIntObject*>(value); } BooleanObject* BooleanObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BooleanObject*>(value); } RegExp* RegExp::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<RegExp*>(value); } Object* Object::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Object*>(value); } Array* Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Array*>(value); } Map* Map::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Map*>(value); } Set* Set::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Set*>(value); } Promise* Promise::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Promise*>(value); } Proxy* Proxy::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Proxy*>(value); } WasmMemoryObject* WasmMemoryObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<WasmMemoryObject*>(value); } WasmModuleObject* WasmModuleObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<WasmModuleObject*>(value); } Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Promise::Resolver*>(value); } ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<ArrayBuffer*>(value); } ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<ArrayBufferView*>(value); } TypedArray* TypedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<TypedArray*>(value); } Uint8Array* Uint8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint8Array*>(value); } Int8Array* Int8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int8Array*>(value); } Uint16Array* Uint16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint16Array*>(value); } Int16Array* Int16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int16Array*>(value); } Uint32Array* Uint32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint32Array*>(value); } Int32Array* Int32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int32Array*>(value); } Float32Array* Float32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Float32Array*>(value); } Float64Array* Float64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Float64Array*>(value); } BigInt64Array* BigInt64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigInt64Array*>(value); } BigUint64Array* BigUint64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigUint64Array*>(value); } Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint8ClampedArray*>(value); } DataView* DataView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<DataView*>(value); } SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<SharedArrayBuffer*>(value); } Function* Function::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Function*>(value); } External* External::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<External*>(value); } template<typename T> Isolate* PropertyCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]); } template<typename T> Local<Value> PropertyCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex])); } template<typename T> Local<Object> PropertyCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex])); } template<typename T> Local<Object> PropertyCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex])); } template<typename T> ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&args_[kReturnValueIndex]); } template <typename T> bool PropertyCallbackInfo<T>::ShouldThrowOnError() const { using I = internal::Internals; if (args_[kShouldThrowOnErrorIndex] != I::IntToSmi(I::kInferShouldThrowMode)) { return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(I::kDontThrow); } return v8::internal::ShouldThrowOnError( reinterpret_cast<v8::internal::Isolate*>(GetIsolate())); } Local<Primitive> Undefined(Isolate* isolate) { using S = internal::Address; using I = internal::Internals; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex); return Local<Primitive>(reinterpret_cast<Primitive*>(slot)); } Local<Primitive> Null(Isolate* isolate) { using S = internal::Address; using I = internal::Internals; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kNullValueRootIndex); return Local<Primitive>(reinterpret_cast<Primitive*>(slot)); } Local<Boolean> True(Isolate* isolate) { using S = internal::Address; using I = internal::Internals; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex); return Local<Boolean>(reinterpret_cast<Boolean*>(slot)); } Local<Boolean> False(Isolate* isolate) { using S = internal::Address; using I = internal::Internals; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex); return Local<Boolean>(reinterpret_cast<Boolean*>(slot)); } void Isolate::SetData(uint32_t slot, void* data) { using I = internal::Internals; I::SetEmbedderData(this, slot, data); } void* Isolate::GetData(uint32_t slot) { using I = internal::Internals; return I::GetEmbedderData(this, slot); } uint32_t Isolate::GetNumberOfDataSlots() { using I = internal::Internals; return I::kNumIsolateDataSlots; } template <class T> MaybeLocal<T> Isolate::GetDataFromSnapshotOnce(size_t index) { T* data = reinterpret_cast<T*>(GetDataFromSnapshotOnce(index)); if (data) internal::PerformCastCheck(data); return Local<T>(data); } Local<Value> Context::GetEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS using A = internal::Address; using I = internal::Internals; A ctx = *reinterpret_cast<const A*>(this); A embedder_data = I::ReadTaggedPointerField(ctx, I::kNativeContextEmbedderDataOffset); int value_offset = I::kEmbedderDataArrayHeaderSize + (I::kEmbedderDataSlotSize * index); A value = I::ReadRawField<A>(embedder_data, value_offset); #ifdef V8_COMPRESS_POINTERS // We read the full pointer value and then decompress it in order to avoid // dealing with potential endiannes issues. value = I::DecompressTaggedAnyField(embedder_data, static_cast<uint32_t>(value)); #endif internal::Isolate* isolate = internal::IsolateFromNeverReadOnlySpaceObject( *reinterpret_cast<A*>(this)); A* result = HandleScope::CreateHandle(isolate, value); return Local<Value>(reinterpret_cast<Value*>(result)); #else return SlowGetEmbedderData(index); #endif } void* Context::GetAlignedPointerFromEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS using A = internal::Address; using I = internal::Internals; A ctx = *reinterpret_cast<const A*>(this); A embedder_data = I::ReadTaggedPointerField(ctx, I::kNativeContextEmbedderDataOffset); int value_offset = I::kEmbedderDataArrayHeaderSize + (I::kEmbedderDataSlotSize * index); #ifdef V8_HEAP_SANDBOX value_offset += I::kEmbedderDataSlotRawPayloadOffset; #endif internal::Isolate* isolate = I::GetIsolateForHeapSandbox(ctx); return reinterpret_cast<void*>( I::ReadExternalPointerField(isolate, embedder_data, value_offset, internal::kEmbedderDataSlotPayloadTag)); #else return SlowGetAlignedPointerFromEmbedderData(index); #endif } template <class T> MaybeLocal<T> Context::GetDataFromSnapshotOnce(size_t index) { T* data = reinterpret_cast<T*>(GetDataFromSnapshotOnce(index)); if (data) internal::PerformCastCheck(data); return Local<T>(data); } template <class T> size_t SnapshotCreator::AddData(Local<Context> context, Local<T> object) { T* object_ptr = *object; internal::Address* p = reinterpret_cast<internal::Address*>(object_ptr); return AddData(context, *p); } template <class T> size_t SnapshotCreator::AddData(Local<T> object) { T* object_ptr = *object; internal::Address* p = reinterpret_cast<internal::Address*>(object_ptr); return AddData(*p); } /** * \example shell.cc * A simple shell that takes a list of expressions on the * command-line and executes them. */ /** * \example process.cc */ } // namespace v8 #endif // INCLUDE_V8_H_