Server IP : 184.154.167.98 / Your IP : 3.149.24.70 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/src/kernels/4.18.0-553.22.1.lve.1.el8.x86_64/include/linux/ |
Upload File : |
/* * Scatterlist Cryptographic API. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 David S. Miller (davem@redhat.com) * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> * * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> * and Nettle, by Niels Möller. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #ifndef _LINUX_CRYPTO_H #define _LINUX_CRYPTO_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/bug.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/uaccess.h> #include <linux/completion.h> /* * Autoloaded crypto modules should only use a prefixed name to avoid allowing * arbitrary modules to be loaded. Loading from userspace may still need the * unprefixed names, so retains those aliases as well. * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro * expands twice on the same line. Instead, use a separate base name for the * alias. */ #define MODULE_ALIAS_CRYPTO(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_crypto, "crypto-" name) /* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 #define CRYPTO_ALG_TYPE_KPP 0x00000008 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b #define CRYPTO_ALG_TYPE_RNG 0x0000000c #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e #define CRYPTO_ALG_TYPE_HASH 0x0000000e #define CRYPTO_ALG_TYPE_SHASH 0x0000000e #define CRYPTO_ALG_TYPE_AHASH 0x0000000f #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e #define CRYPTO_ALG_LARVAL 0x00000010 #define CRYPTO_ALG_DEAD 0x00000020 #define CRYPTO_ALG_DYING 0x00000040 #define CRYPTO_ALG_ASYNC 0x00000080 /* * Set this bit if and only if the algorithm requires another algorithm of * the same type to handle corner cases. */ #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 /* * This bit is set for symmetric key ciphers that have already been wrapped * with a generic IV generator to prevent them from being wrapped again. */ #define CRYPTO_ALG_GENIV 0x00000200 /* * Set if the algorithm has passed automated run-time testing. Note that * if there is no run-time testing for a given algorithm it is considered * to have passed. */ #define CRYPTO_ALG_TESTED 0x00000400 /* * Set if the algorithm is an instance that is built from templates. */ #define CRYPTO_ALG_INSTANCE 0x00000800 /* Set this bit if the algorithm provided is hardware accelerated but * not available to userspace via instruction set or so. */ #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 /* * Mark a cipher as a service implementation only usable by another * cipher and never by a normal user of the kernel crypto API */ #define CRYPTO_ALG_INTERNAL 0x00002000 /* * Set if the algorithm has a ->setkey() method but can be used without * calling it first, i.e. there is a default key. */ #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 /* * Don't trigger module loading */ #define CRYPTO_NOLOAD 0x00008000 /* * The algorithm may allocate memory during request processing, i.e. during * encryption, decryption, or hashing. Users can request an algorithm with this * flag unset if they can't handle memory allocation failures. * * This flag is currently only implemented for algorithms of type "skcipher", * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not * have this flag set even if they allocate memory. * * In some edge cases, algorithms can allocate memory regardless of this flag. * To avoid these cases, users must obey the following usage constraints: * skcipher: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - If the data were to be divided into chunks of size * crypto_skcipher_walksize() (with any remainder going at the end), no * chunk can cross a page boundary or a scatterlist element boundary. * aead: * - The IV buffer and all scatterlist elements must be aligned to the * algorithm's alignmask. * - The first scatterlist element must contain all the associated data, * and its pages must be !PageHighMem. * - If the plaintext/ciphertext were to be divided into chunks of size * crypto_aead_walksize() (with the remainder going at the end), no chunk * can cross a page boundary or a scatterlist element boundary. * ahash: * - The result buffer must be aligned to the algorithm's alignmask. * - crypto_ahash_finup() must not be used unless the algorithm implements * ->finup() natively. */ #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 /* * Mark an algorithm as a service implementation only usable by a * template and never by a normal user of the kernel crypto API. * This is intended to be used by algorithms that are themselves * not FIPS-approved but may instead be used to implement parts of * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)). */ #define CRYPTO_ALG_FIPS_INTERNAL 0x00020000 /* * Transform masks and values (for crt_flags). */ #define CRYPTO_TFM_NEED_KEY 0x00000001 #define CRYPTO_TFM_REQ_MASK 0x000fff00 #define CRYPTO_TFM_RES_MASK 0xfff00000 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 #define CRYPTO_TFM_REQ_NEED_RESEED 0x00000800 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 #define CRYPTO_TFM_FIPS_COMPLIANCE 0x80000000 /* * Miscellaneous stuff. */ #define CRYPTO_MAX_ALG_NAME 128 /* * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual * declaration) is used to ensure that the crypto_tfm context structure is * aligned correctly for the given architecture so that there are no alignment * faults for C data types. In particular, this is required on platforms such * as arm where pointers are 32-bit aligned but there are data types such as * u64 which require 64-bit alignment. */ #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) struct scatterlist; struct crypto_ablkcipher; struct crypto_async_request; struct crypto_blkcipher; struct crypto_tfm; struct crypto_type; struct skcipher_givcrypt_request; typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); /** * DOC: Block Cipher Context Data Structures * * These data structures define the operating context for each block cipher * type. */ struct crypto_async_request { struct list_head list; crypto_completion_t complete; void *data; struct crypto_tfm *tfm; u32 flags; }; struct ablkcipher_request { struct crypto_async_request base; unsigned int nbytes; void *info; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct blkcipher_desc { struct crypto_blkcipher *tfm; void *info; u32 flags; }; struct cipher_desc { struct crypto_tfm *tfm; void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, const u8 *src, unsigned int nbytes); void *info; }; /** * DOC: Block Cipher Algorithm Definitions * * These data structures define modular crypto algorithm implementations, * managed via crypto_register_alg() and crypto_unregister_alg(). */ /** * struct ablkcipher_alg - asynchronous block cipher definition * @min_keysize: Minimum key size supported by the transformation. This is the * smallest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MIN_KEY_SIZE" include/crypto/ * @max_keysize: Maximum key size supported by the transformation. This is the * largest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MAX_KEY_SIZE" include/crypto/ * @setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function can * be called multiple times during the existence of the transformation * object, so one must make sure the key is properly reprogrammed into * the hardware. This function is also responsible for checking the key * length for validity. In case a software fallback was put in place in * the @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt * the supplied scatterlist containing the blocks of data. The crypto * API consumer is responsible for aligning the entries of the * scatterlist properly and making sure the chunks are correctly * sized. In case a software fallback was put in place in the * @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. In case the * key was stored in transformation context, the key might need to be * re-programmed into the hardware in this function. This function * shall not modify the transformation context, as this function may * be called in parallel with the same transformation object. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt * and the conditions are exactly the same. * @givencrypt: Update the IV for encryption. With this function, a cipher * implementation may provide the function on how to update the IV * for encryption. * @givdecrypt: Update the IV for decryption. This is the reverse of * @givencrypt . * @geniv: The transformation implementation may use an "IV generator" provided * by the kernel crypto API. Several use cases have a predefined * approach how IVs are to be updated. For such use cases, the kernel * crypto API provides ready-to-use implementations that can be * referenced with this variable. * @ivsize: IV size applicable for transformation. The consumer must provide an * IV of exactly that size to perform the encrypt or decrypt operation. * * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are * mandatory and must be filled. */ struct ablkcipher_alg { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct ablkcipher_request *req); int (*decrypt)(struct ablkcipher_request *req); int (*givencrypt)(struct skcipher_givcrypt_request *req); int (*givdecrypt)(struct skcipher_givcrypt_request *req); const char *geniv; unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; }; /** * struct blkcipher_alg - synchronous block cipher definition * @min_keysize: see struct ablkcipher_alg * @max_keysize: see struct ablkcipher_alg * @setkey: see struct ablkcipher_alg * @encrypt: see struct ablkcipher_alg * @decrypt: see struct ablkcipher_alg * @geniv: see struct ablkcipher_alg * @ivsize: see struct ablkcipher_alg * * All fields except @geniv and @ivsize are mandatory and must be filled. */ struct blkcipher_alg { int (*setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); const char *geniv; unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; }; /** * struct cipher_alg - single-block symmetric ciphers definition * @cia_min_keysize: Minimum key size supported by the transformation. This is * the smallest key length supported by this transformation * algorithm. This must be set to one of the pre-defined * values as this is not hardware specific. Possible values * for this field can be found via git grep "_MIN_KEY_SIZE" * include/crypto/ * @cia_max_keysize: Maximum key size supported by the transformation. This is * the largest key length supported by this transformation * algorithm. This must be set to one of the pre-defined values * as this is not hardware specific. Possible values for this * field can be found via git grep "_MAX_KEY_SIZE" * include/crypto/ * @cia_setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function * can be called multiple times during the existence of the * transformation object, so one must make sure the key is properly * reprogrammed into the hardware. This function is also * responsible for checking the key length for validity. * @cia_encrypt: Encrypt a single block. This function is used to encrypt a * single block of data, which must be @cra_blocksize big. This * always operates on a full @cra_blocksize and it is not possible * to encrypt a block of smaller size. The supplied buffers must * therefore also be at least of @cra_blocksize size. Both the * input and output buffers are always aligned to @cra_alignmask. * In case either of the input or output buffer supplied by user * of the crypto API is not aligned to @cra_alignmask, the crypto * API will re-align the buffers. The re-alignment means that a * new buffer will be allocated, the data will be copied into the * new buffer, then the processing will happen on the new buffer, * then the data will be copied back into the original buffer and * finally the new buffer will be freed. In case a software * fallback was put in place in the @cra_init call, this function * might need to use the fallback if the algorithm doesn't support * all of the key sizes. In case the key was stored in * transformation context, the key might need to be re-programmed * into the hardware in this function. This function shall not * modify the transformation context, as this function may be * called in parallel with the same transformation object. * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to * @cia_encrypt, and the conditions are exactly the same. * * All fields are mandatory and must be filled. */ struct cipher_alg { unsigned int cia_min_keysize; unsigned int cia_max_keysize; int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; struct compress_alg { int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; #define cra_ablkcipher cra_u.ablkcipher #define cra_blkcipher cra_u.blkcipher #define cra_cipher cra_u.cipher #define cra_compress cra_u.compress /** * struct crypto_alg - definition of a cryptograpic cipher algorithm * @cra_flags: Flags describing this transformation. See include/linux/crypto.h * CRYPTO_ALG_* flags for the flags which go in here. Those are * used for fine-tuning the description of the transformation * algorithm. * @cra_blocksize: Minimum block size of this transformation. The size in bytes * of the smallest possible unit which can be transformed with * this algorithm. The users must respect this value. * In case of HASH transformation, it is possible for a smaller * block than @cra_blocksize to be passed to the crypto API for * transformation, in case of any other transformation type, an * error will be returned upon any attempt to transform smaller * than @cra_blocksize chunks. * @cra_ctxsize: Size of the operational context of the transformation. This * value informs the kernel crypto API about the memory size * needed to be allocated for the transformation context. * @cra_alignmask: Alignment mask for the input and output data buffer. The data * buffer containing the input data for the algorithm must be * aligned to this alignment mask. The data buffer for the * output data must be aligned to this alignment mask. Note that * the Crypto API will do the re-alignment in software, but * only under special conditions and there is a performance hit. * The re-alignment happens at these occasions for different * @cra_u types: cipher -- For both input data and output data * buffer; ahash -- For output hash destination buf; shash -- * For output hash destination buf. * This is needed on hardware which is flawed by design and * cannot pick data from arbitrary addresses. * @cra_priority: Priority of this transformation implementation. In case * multiple transformations with same @cra_name are available to * the Crypto API, the kernel will use the one with highest * @cra_priority. * @cra_name: Generic name (usable by multiple implementations) of the * transformation algorithm. This is the name of the transformation * itself. This field is used by the kernel when looking up the * providers of particular transformation. * @cra_driver_name: Unique name of the transformation provider. This is the * name of the provider of the transformation. This can be any * arbitrary value, but in the usual case, this contains the * name of the chip or provider and the name of the * transformation algorithm. * @cra_type: Type of the cryptographic transformation. This is a pointer to * struct crypto_type, which implements callbacks common for all * transformation types. There are multiple options: * &crypto_blkcipher_type, &crypto_ablkcipher_type, * &crypto_ahash_type, &crypto_rng_type. * This field might be empty. In that case, there are no common * callbacks. This is the case for: cipher, compress, shash. * @cra_u: Callbacks implementing the transformation. This is a union of * multiple structures. Depending on the type of transformation selected * by @cra_type and @cra_flags above, the associated structure must be * filled with callbacks. This field might be empty. This is the case * for ahash, shash. * @cra_init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @cra_exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @cra_init, used to remove various changes set in * @cra_init. * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher * definition. See @struct @ablkcipher_alg. * @cra_u.blkcipher: Union member which contains a synchronous block cipher * definition See @struct @blkcipher_alg. * @cra_u.cipher: Union member which contains a single-block symmetric cipher * definition. See @struct @cipher_alg. * @cra_u.compress: Union member which contains a (de)compression algorithm. * See @struct @compress_alg. * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE * @cra_list: internally used * @cra_users: internally used * @cra_refcnt: internally used * @cra_destroy: internally used * * The struct crypto_alg describes a generic Crypto API algorithm and is common * for all of the transformations. Any variable not documented here shall not * be used by a cipher implementation as it is internal to the Crypto API. */ struct crypto_alg { struct list_head cra_list; struct list_head cra_users; u32 cra_flags; unsigned int cra_blocksize; unsigned int cra_ctxsize; unsigned int cra_alignmask; int cra_priority; refcount_t cra_refcnt; char cra_name[CRYPTO_MAX_ALG_NAME]; char cra_driver_name[CRYPTO_MAX_ALG_NAME]; const struct crypto_type *cra_type; union { struct ablkcipher_alg ablkcipher; struct blkcipher_alg blkcipher; struct cipher_alg cipher; struct compress_alg compress; } cra_u; int (*cra_init)(struct crypto_tfm *tfm); void (*cra_exit)(struct crypto_tfm *tfm); void (*cra_destroy)(struct crypto_alg *alg); struct module *cra_module; } CRYPTO_MINALIGN_ATTR; /* * A helper struct for waiting for completion of async crypto ops */ struct crypto_wait { struct completion completion; int err; }; /* * Macro for declaring a crypto op async wait object on stack */ #define DECLARE_CRYPTO_WAIT(_wait) \ struct crypto_wait _wait = { \ COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } /* * Async ops completion helper functioons */ void crypto_req_done(struct crypto_async_request *req, int err); static inline int crypto_wait_req(int err, struct crypto_wait *wait) { switch (err) { case -EINPROGRESS: case -EBUSY: wait_for_completion(&wait->completion); reinit_completion(&wait->completion); err = wait->err; break; }; return err; } static inline void crypto_init_wait(struct crypto_wait *wait) { init_completion(&wait->completion); } /* * Algorithm registration interface. */ int crypto_register_alg(struct crypto_alg *alg); int crypto_unregister_alg(struct crypto_alg *alg); int crypto_register_algs(struct crypto_alg *algs, int count); int crypto_unregister_algs(struct crypto_alg *algs, int count); /* * Algorithm query interface. */ int crypto_has_alg(const char *name, u32 type, u32 mask); /* * Transforms: user-instantiated objects which encapsulate algorithms * and core processing logic. Managed via crypto_alloc_*() and * crypto_free_*(), as well as the various helpers below. */ struct ablkcipher_tfm { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct ablkcipher_request *req); int (*decrypt)(struct ablkcipher_request *req); struct crypto_ablkcipher *base; unsigned int ivsize; unsigned int reqsize; }; struct blkcipher_tfm { void *iv; int (*setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes); }; struct cipher_tfm { int (*cit_setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; struct compress_tfm { int (*cot_compress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); int (*cot_decompress)(struct crypto_tfm *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen); }; #define crt_ablkcipher crt_u.ablkcipher #define crt_blkcipher crt_u.blkcipher #define crt_cipher crt_u.cipher #define crt_compress crt_u.compress struct crypto_tfm { u32 crt_flags; union { struct ablkcipher_tfm ablkcipher; struct blkcipher_tfm blkcipher; struct cipher_tfm cipher; struct compress_tfm compress; } crt_u; void (*exit)(struct crypto_tfm *tfm); struct crypto_alg *__crt_alg; void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_ablkcipher { struct crypto_tfm base; }; struct crypto_blkcipher { struct crypto_tfm base; }; struct crypto_cipher { struct crypto_tfm base; }; struct crypto_comp { struct crypto_tfm base; }; enum { CRYPTOA_UNSPEC, CRYPTOA_ALG, CRYPTOA_TYPE, CRYPTOA_U32, __CRYPTOA_MAX, }; #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) /* Maximum number of (rtattr) parameters for each template. */ #define CRYPTO_MAX_ATTRS 32 struct crypto_attr_alg { char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_attr_type { u32 type; u32 mask; }; struct crypto_attr_u32 { u32 num; }; /* * Transform user interface. */ struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); static inline void crypto_free_tfm(struct crypto_tfm *tfm) { return crypto_destroy_tfm(tfm, tfm); } int alg_test(const char *driver, const char *alg, u32 type, u32 mask); /* * Transform helpers which query the underlying algorithm. */ static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_name; } static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_driver_name; } static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_priority; } static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; } static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_blocksize; } static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_alignmask; } static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) { return tfm->crt_flags; } static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags |= flags; } static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) { tfm->crt_flags &= ~flags; } static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) { return tfm->__crt_ctx; } static inline unsigned int crypto_tfm_ctx_alignment(void) { struct crypto_tfm *tfm; return __alignof__(tfm->__crt_ctx); } /* * API wrappers. */ static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( struct crypto_tfm *tfm) { return (struct crypto_ablkcipher *)tfm; } static inline u32 crypto_skcipher_type(u32 type) { type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); type |= CRYPTO_ALG_TYPE_BLKCIPHER; return type; } static inline u32 crypto_skcipher_mask(u32 mask) { mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; return mask; } /** * DOC: Asynchronous Block Cipher API * * Asynchronous block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). * * Asynchronous cipher operations imply that the function invocation for a * cipher request returns immediately before the completion of the operation. * The cipher request is scheduled as a separate kernel thread and therefore * load-balanced on the different CPUs via the process scheduler. To allow * the kernel crypto API to inform the caller about the completion of a cipher * request, the caller must provide a callback function. That function is * invoked with the cipher handle when the request completes. * * To support the asynchronous operation, additional information than just the * cipher handle must be supplied to the kernel crypto API. That additional * information is given by filling in the ablkcipher_request data structure. * * For the asynchronous block cipher API, the state is maintained with the tfm * cipher handle. A single tfm can be used across multiple calls and in * parallel. For asynchronous block cipher calls, context data supplied and * only used by the caller can be referenced the request data structure in * addition to the IV used for the cipher request. The maintenance of such * state information would be important for a crypto driver implementer to * have, because when calling the callback function upon completion of the * cipher operation, that callback function may need some information about * which operation just finished if it invoked multiple in parallel. This * state information is unused by the kernel crypto API. */ static inline struct crypto_tfm *crypto_ablkcipher_tfm( struct crypto_ablkcipher *tfm) { return &tfm->base; } /** * crypto_free_ablkcipher() - zeroize and free cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) { crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); } /** * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ablkcipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the ablkcipher is known to the kernel crypto API; false * otherwise */ static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, u32 mask) { return crypto_has_alg(alg_name, crypto_skcipher_type(type), crypto_skcipher_mask(mask)); } static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( struct crypto_ablkcipher *tfm) { return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; } /** * crypto_ablkcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the ablkcipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_ablkcipher_ivsize( struct crypto_ablkcipher *tfm) { return crypto_ablkcipher_crt(tfm)->ivsize; } /** * crypto_ablkcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the ablkcipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_ablkcipher_blocksize( struct crypto_ablkcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); } static inline unsigned int crypto_ablkcipher_alignmask( struct crypto_ablkcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); } static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) { return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); } static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); } static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); } /** * crypto_ablkcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the ablkcipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); return crt->setkey(crt->base, key, keylen); } /** * crypto_ablkcipher_reqtfm() - obtain cipher handle from request * @req: ablkcipher_request out of which the cipher handle is to be obtained * * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request * data structure. * * Return: crypto_ablkcipher handle */ static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( struct ablkcipher_request *req) { return __crypto_ablkcipher_cast(req->base.tfm); } /** * crypto_ablkcipher_encrypt() - encrypt plaintext * @req: reference to the ablkcipher_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the ablkcipher_request handle. That data * structure and how it is filled with data is discussed with the * ablkcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) { struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); return crt->encrypt(req); } /** * crypto_ablkcipher_decrypt() - decrypt ciphertext * @req: reference to the ablkcipher_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the ablkcipher_request handle. That data * structure and how it is filled with data is discussed with the * ablkcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) { struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); return crt->decrypt(req); } /** * DOC: Asynchronous Cipher Request Handle * * The ablkcipher_request data structure contains all pointers to data * required for the asynchronous cipher operation. This includes the cipher * handle (which can be used by multiple ablkcipher_request instances), pointer * to plaintext and ciphertext, asynchronous callback function, etc. It acts * as a handle to the ablkcipher_request_* API calls in a similar way as * ablkcipher handle to the crypto_ablkcipher_* API calls. */ /** * crypto_ablkcipher_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_ablkcipher_reqsize( struct crypto_ablkcipher *tfm) { return crypto_ablkcipher_crt(tfm)->reqsize; } /** * ablkcipher_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing ablkcipher handle in the request * data structure with a different one. */ static inline void ablkcipher_request_set_tfm( struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) { req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); } static inline struct ablkcipher_request *ablkcipher_request_cast( struct crypto_async_request *req) { return container_of(req, struct ablkcipher_request, base); } /** * ablkcipher_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the ablkcipher * encrypt and decrypt API calls. During the allocation, the provided ablkcipher * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct ablkcipher_request *ablkcipher_request_alloc( struct crypto_ablkcipher *tfm, gfp_t gfp) { struct ablkcipher_request *req; req = kmalloc(sizeof(struct ablkcipher_request) + crypto_ablkcipher_reqsize(tfm), gfp); if (likely(req)) ablkcipher_request_set_tfm(req, tfm); return req; } /** * ablkcipher_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void ablkcipher_request_free(struct ablkcipher_request *req) { kzfree(req); } /** * ablkcipher_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once the * cipher operation completes. * * The callback function is registered with the ablkcipher_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void ablkcipher_request_set_callback( struct ablkcipher_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * ablkcipher_request_set_crypt() - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @nbytes: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_ablkcipher_ivsize * * This function allows setting of the source data and destination data * scatter / gather lists. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. */ static inline void ablkcipher_request_set_crypt( struct ablkcipher_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int nbytes, void *iv) { req->src = src; req->dst = dst; req->nbytes = nbytes; req->info = iv; } /** * DOC: Synchronous Block Cipher API * * The synchronous block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) * * Synchronous calls, have a context in the tfm. But since a single tfm can be * used in multiple calls and in parallel, this info should not be changeable * (unless a lock is used). This applies, for example, to the symmetric key. * However, the IV is changeable, so there is an iv field in blkcipher_tfm * structure for synchronous blkcipher api. So, its the only state info that can * be kept for synchronous calls without using a big lock across a tfm. * * The block cipher API allows the use of a complete cipher, i.e. a cipher * consisting of a template (a block chaining mode) and a single block cipher * primitive (e.g. AES). * * The plaintext data buffer and the ciphertext data buffer are pointed to * by using scatter/gather lists. The cipher operation is performed * on all segments of the provided scatter/gather lists. * * The kernel crypto API supports a cipher operation "in-place" which means that * the caller may provide the same scatter/gather list for the plaintext and * cipher text. After the completion of the cipher operation, the plaintext * data is replaced with the ciphertext data in case of an encryption and vice * versa for a decryption. The caller must ensure that the scatter/gather lists * for the output data point to sufficiently large buffers, i.e. multiples of * the block size of the cipher. */ static inline struct crypto_blkcipher *__crypto_blkcipher_cast( struct crypto_tfm *tfm) { return (struct crypto_blkcipher *)tfm; } static inline struct crypto_blkcipher *crypto_blkcipher_cast( struct crypto_tfm *tfm) { BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); return __crypto_blkcipher_cast(tfm); } /** * crypto_alloc_blkcipher() - allocate synchronous block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * blkcipher cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a block cipher. The returned struct * crypto_blkcipher is the cipher handle that is required for any subsequent * API invocation for that block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_blkcipher *crypto_alloc_blkcipher( const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_BLKCIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_blkcipher_tfm( struct crypto_blkcipher *tfm) { return &tfm->base; } /** * crypto_free_blkcipher() - zeroize and free the block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) { crypto_free_tfm(crypto_blkcipher_tfm(tfm)); } /** * crypto_has_blkcipher() - Search for the availability of a block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the block cipher is known to the kernel crypto API; false * otherwise */ static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_BLKCIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } /** * crypto_blkcipher_name() - return the name / cra_name from the cipher handle * @tfm: cipher handle * * Return: The character string holding the name of the cipher */ static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) { return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); } static inline struct blkcipher_tfm *crypto_blkcipher_crt( struct crypto_blkcipher *tfm) { return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; } static inline struct blkcipher_alg *crypto_blkcipher_alg( struct crypto_blkcipher *tfm) { return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; } /** * crypto_blkcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the block cipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) { return crypto_blkcipher_alg(tfm)->ivsize; } /** * crypto_blkcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the block cipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation. * * Return: block size of cipher */ static inline unsigned int crypto_blkcipher_blocksize( struct crypto_blkcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); } static inline unsigned int crypto_blkcipher_alignmask( struct crypto_blkcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); } static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) { return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); } static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); } static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); } /** * crypto_blkcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the block cipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, const u8 *key, unsigned int keylen) { return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), key, keylen); } /** * crypto_blkcipher_encrypt() - encrypt plaintext * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * ciphertext * @src: scatter/gather list that holds the plaintext * @nbytes: number of bytes of the plaintext to encrypt. * * Encrypt plaintext data using the IV set by the caller with a preceding * call of crypto_blkcipher_set_iv. * * The blkcipher_desc data structure must be filled by the caller and can * reside on the stack. The caller must fill desc as follows: desc.tfm is filled * with the block cipher handle; desc.flags is filled with either * CRYPTO_TFM_REQ_MAY_SLEEP or 0. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { desc->info = crypto_blkcipher_crt(desc->tfm)->iv; return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * ciphertext * @src: scatter/gather list that holds the plaintext * @nbytes: number of bytes of the plaintext to encrypt. * * Encrypt plaintext data with the use of an IV that is solely used for this * cipher operation. Any previously set IV is not used. * * The blkcipher_desc data structure must be filled by the caller and can * reside on the stack. The caller must fill desc as follows: desc.tfm is filled * with the block cipher handle; desc.info is filled with the IV to be used for * the current operation; desc.flags is filled with either * CRYPTO_TFM_REQ_MAY_SLEEP or 0. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_decrypt() - decrypt ciphertext * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * plaintext * @src: scatter/gather list that holds the ciphertext * @nbytes: number of bytes of the ciphertext to decrypt. * * Decrypt ciphertext data using the IV set by the caller with a preceding * call of crypto_blkcipher_set_iv. * * The blkcipher_desc data structure must be filled by the caller as documented * for the crypto_blkcipher_encrypt call above. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred * */ static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { desc->info = crypto_blkcipher_crt(desc->tfm)->iv; return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV * @desc: reference to the block cipher handle with meta data * @dst: scatter/gather list that is filled by the cipher operation with the * plaintext * @src: scatter/gather list that holds the ciphertext * @nbytes: number of bytes of the ciphertext to decrypt. * * Decrypt ciphertext data with the use of an IV that is solely used for this * cipher operation. Any previously set IV is not used. * * The blkcipher_desc data structure must be filled by the caller as documented * for the crypto_blkcipher_encrypt_iv call above. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); } /** * crypto_blkcipher_set_iv() - set IV for cipher * @tfm: cipher handle * @src: buffer holding the IV * @len: length of the IV in bytes * * The caller provided IV is set for the block cipher referenced by the cipher * handle. */ static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, const u8 *src, unsigned int len) { memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); } /** * crypto_blkcipher_get_iv() - obtain IV from cipher * @tfm: cipher handle * @dst: buffer filled with the IV * @len: length of the buffer dst * * The caller can obtain the IV set for the block cipher referenced by the * cipher handle and store it into the user-provided buffer. If the buffer * has an insufficient space, the IV is truncated to fit the buffer. */ static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, u8 *dst, unsigned int len) { memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); } /** * DOC: Single Block Cipher API * * The single block cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). * * Using the single block cipher API calls, operations with the basic cipher * primitive can be implemented. These cipher primitives exclude any block * chaining operations including IV handling. * * The purpose of this single block cipher API is to support the implementation * of templates or other concepts that only need to perform the cipher operation * on one block at a time. Templates invoke the underlying cipher primitive * block-wise and process either the input or the output data of these cipher * operations. */ static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) { return (struct crypto_cipher *)tfm; } static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) { BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); return __crypto_cipher_cast(tfm); } /** * crypto_alloc_cipher() - allocate single block cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a single block cipher. The returned struct * crypto_cipher is the cipher handle that is required for any subsequent API * invocation for that single block cipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) { return &tfm->base; } /** * crypto_free_cipher() - zeroize and free the single block cipher handle * @tfm: cipher handle to be freed */ static inline void crypto_free_cipher(struct crypto_cipher *tfm) { crypto_free_tfm(crypto_cipher_tfm(tfm)); } /** * crypto_has_cipher() - Search for the availability of a single block cipher * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * single block cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Return: true when the single block cipher is known to the kernel crypto API; * false otherwise */ static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) { return &crypto_cipher_tfm(tfm)->crt_cipher; } /** * crypto_cipher_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the single block cipher referenced with the cipher handle * tfm is returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) { return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); } static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) { return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); } static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) { return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); } static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); } static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); } /** * crypto_cipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the single block cipher referenced by the * cipher handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, const u8 *key, unsigned int keylen) { return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), key, keylen); } /** * crypto_cipher_encrypt_one() - encrypt one block of plaintext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the ciphertext * @src: buffer holding the plaintext to be encrypted * * Invoke the encryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src) { crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), dst, src); } /** * crypto_cipher_decrypt_one() - decrypt one block of ciphertext * @tfm: cipher handle * @dst: points to the buffer that will be filled with the plaintext * @src: buffer holding the ciphertext to be decrypted * * Invoke the decryption operation of one block. The caller must ensure that * the plaintext and ciphertext buffers are at least one block in size. */ static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src) { crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), dst, src); } static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) { return (struct crypto_comp *)tfm; } static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) { BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & CRYPTO_ALG_TYPE_MASK); return __crypto_comp_cast(tfm); } static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); } static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) { return &tfm->base; } static inline void crypto_free_comp(struct crypto_comp *tfm) { crypto_free_tfm(crypto_comp_tfm(tfm)); } static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_COMPRESS; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_has_alg(alg_name, type, mask); } static inline const char *crypto_comp_name(struct crypto_comp *tfm) { return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); } static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) { return &crypto_comp_tfm(tfm)->crt_compress; } static inline int crypto_comp_compress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen) { return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), src, slen, dst, dlen); } static inline int crypto_comp_decompress(struct crypto_comp *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int *dlen) { return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), src, slen, dst, dlen); } #endif /* _LINUX_CRYPTO_H */