Server IP : 184.154.167.98 / Your IP : 52.14.49.59 Web Server : Apache System : Linux pink.dnsnetservice.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 User : puertode ( 1767) PHP Version : 7.2.34 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /usr/src/kernels/4.18.0-553.22.1.lve.1.el8.x86_64/include/linux/ |
Upload File : |
// SPDX-License-Identifier: GPL-2.0 /* * device.h - generic, centralized driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * * See Documentation/driver-model/ for more information. */ #ifndef _DEVICE_H_ #define _DEVICE_H_ #include <linux/dev_printk.h> #include <linux/ioport.h> #include <linux/kobject.h> #include <linux/klist.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/compiler.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/rh_kabi.h> #include <asm/device.h> struct device; struct device_private; struct device_driver; struct driver_private; struct module; struct class; struct subsys_private; struct bus_type; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct iommu_fwspec; struct dev_pin_info; struct dev_iommu; struct bus_attribute { struct attribute attr; ssize_t (*show)(struct bus_type *bus, char *buf); ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count); }; #define BUS_ATTR(_name, _mode, _show, _store) \ struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store) #define BUS_ATTR_RW(_name) \ struct bus_attribute bus_attr_##_name = __ATTR_RW(_name) #define BUS_ATTR_RO(_name) \ struct bus_attribute bus_attr_##_name = __ATTR_RO(_name) #define BUS_ATTR_WO(_name) \ struct bus_attribute bus_attr_##_name = __ATTR_WO(_name) int __must_check bus_create_file(const struct bus_type *bus, struct bus_attribute *attr); void bus_remove_file(const struct bus_type *bus, struct bus_attribute *attr); /** * struct bus_type - The bus type of the device * * @name: The name of the bus. * @dev_name: Used for subsystems to enumerate devices like ("foo%u", dev->id). * @dev_root: Default device to use as the parent. * @bus_groups: Default attributes of the bus. * @dev_groups: Default attributes of the devices on the bus. * @drv_groups: Default attributes of the device drivers on the bus. * @match: Called, perhaps multiple times, whenever a new device or driver * is added for this bus. It should return a positive value if the * given device can be handled by the given driver and zero * otherwise. It may also return error code if determining that * the driver supports the device is not possible. In case of * -EPROBE_DEFER it will queue the device for deferred probing. * @uevent: Called when a device is added, removed, or a few other things * that generate uevents to add the environment variables. * @probe: Called when a new device or driver add to this bus, and callback * the specific driver's probe to initial the matched device. * @sync_state: Called to sync device state to software state after all the * state tracking consumers linked to this device (present at * the time of late_initcall) have successfully bound to a * driver. If the device has no consumers, this function will * be called at late_initcall_sync level. If the device has * consumers that are never bound to a driver, this function * will never get called until they do. * @remove: Called when a device removed from this bus. * @shutdown: Called at shut-down time to quiesce the device. * * @online: Called to put the device back online (after offlining it). * @offline: Called to put the device offline for hot-removal. May fail. * * @suspend: Called when a device on this bus wants to go to sleep mode. * @resume: Called to bring a device on this bus out of sleep mode. * @num_vf: Called to find out how many virtual functions a device on this * bus supports. * @dma_configure: Called to setup DMA configuration on a device on * this bus. * @dma_cleanup: Called to cleanup DMA configuration on a device on * this bus. * @pm: Power management operations of this bus, callback the specific * device driver's pm-ops. * @iommu_ops: IOMMU specific operations for this bus, used to attach IOMMU * driver implementations to a bus and allow the driver to do * bus-specific setup * @p: The private data of the driver core, only the driver core can * touch this. * @need_parent_lock: When probing or removing a device on this bus, the * device core should lock the device's parent. * * A bus is a channel between the processor and one or more devices. For the * purposes of the device model, all devices are connected via a bus, even if * it is an internal, virtual, "platform" bus. Buses can plug into each other. * A USB controller is usually a PCI device, for example. The device model * represents the actual connections between buses and the devices they control. * A bus is represented by the bus_type structure. It contains the name, the * default attributes, the bus' methods, PM operations, and the driver core's * private data. */ struct bus_type { const char *name; const char *dev_name; struct device *dev_root; const struct attribute_group **bus_groups; const struct attribute_group **dev_groups; const struct attribute_group **drv_groups; int (*match)(struct device *dev, struct device_driver *drv); int (*uevent)(struct device *dev, struct kobj_uevent_env *env); int (*probe)(struct device *dev); int (*remove)(struct device *dev); void (*shutdown)(struct device *dev); int (*online)(struct device *dev); int (*offline)(struct device *dev); int (*suspend)(struct device *dev, pm_message_t state); int (*resume)(struct device *dev); int (*num_vf)(struct device *dev); int (*dma_configure)(struct device *dev); const struct dev_pm_ops *pm; const struct iommu_ops *iommu_ops; struct subsys_private *p; RH_KABI_DEPRECATE(struct lock_class_key, lock_key) bool need_parent_lock; RH_KABI_EXTEND(void (*sync_state)(struct device *dev)) RH_KABI_EXTEND(void (*dma_cleanup)(struct device *dev)) }; extern int __must_check bus_register(struct bus_type *bus); extern void bus_unregister(const struct bus_type *bus); extern int __must_check bus_rescan_devices(struct bus_type *bus); /* iterator helpers for buses */ int device_match_acpi_dev(struct device *dev, const void *adev); int device_match_acpi_handle(struct device *dev, const void *handle); int device_match_name(struct device *dev, const void *name); int device_match_of_node(struct device *dev, const void *np); int device_match_fwnode(struct device *dev, const void *fwnode); int device_match_devt(struct device *dev, const void *pdevt); int bus_for_each_dev(const struct bus_type *bus, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); struct device *bus_find_device(const struct bus_type *bus, struct device *start, const void *data, int (*match)(struct device *dev, const void *data)); /** * bus_find_device_by_name - device iterator for locating a particular device * of a specific name. * @bus: bus type * @start: Device to begin with * @name: name of the device to match */ static inline struct device *bus_find_device_by_name(const struct bus_type *bus, struct device *start, const char *name) { return bus_find_device(bus, start, name, device_match_name); } /** * bus_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @bus: bus type * @np: of_node of the device to match. */ static inline struct device * bus_find_device_by_of_node(const struct bus_type *bus, const struct device_node *np) { return bus_find_device(bus, NULL, np, device_match_of_node); } /** * bus_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @bus: bus type * @fwnode: fwnode of the device to match. */ static inline struct device * bus_find_device_by_fwnode(const struct bus_type *bus, const struct fwnode_handle *fwnode) { return bus_find_device(bus, NULL, fwnode, device_match_fwnode); } /** * bus_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @bus: bus type * @devt: device type of the device to match. */ static inline struct device *bus_find_device_by_devt(const struct bus_type *bus, dev_t devt) { return bus_find_device(bus, NULL, &devt, device_match_devt); } #ifdef CONFIG_ACPI struct acpi_device; /** * bus_find_device_by_acpi_dev : device iterator for locating a particular device * matching the ACPI COMPANION device. * @bus: bus type * @adev: ACPI COMPANION device to match. */ static inline struct device * bus_find_device_by_acpi_dev(const struct bus_type *bus, const struct acpi_device *adev) { return bus_find_device(bus, NULL, adev, device_match_acpi_dev); } #else static inline struct device * bus_find_device_by_acpi_dev(const struct bus_type *bus, const void *adev) { return NULL; } #endif int bus_for_each_drv(const struct bus_type *bus, struct device_driver *start, void *data, int (*fn)(struct device_driver *, void *)); void bus_sort_breadthfirst(struct bus_type *bus, int (*compare)(const struct device *a, const struct device *b)); /* * Bus notifiers: Get notified of addition/removal of devices * and binding/unbinding of drivers to devices. * In the long run, it should be a replacement for the platform * notify hooks. */ struct notifier_block; extern int bus_register_notifier(const struct bus_type *bus, struct notifier_block *nb); extern int bus_unregister_notifier(const struct bus_type *bus, struct notifier_block *nb); /** * enum bus_notifier_event - Bus Notifier events that have happened * @BUS_NOTIFY_ADD_DEVICE: device is added to this bus * @BUS_NOTIFY_DEL_DEVICE: device is about to be removed from this bus * @BUS_NOTIFY_REMOVED_DEVICE: device is successfully removed from this bus * @BUS_NOTIFY_BIND_DRIVER: a driver is about to be bound to this device on this bus * @BUS_NOTIFY_BOUND_DRIVER: a driver is successfully bound to this device on this bus * @BUS_NOTIFY_UNBIND_DRIVER: a driver is about to be unbound from this device on this bus * @BUS_NOTIFY_UNBOUND_DRIVER: a driver is successfully unbound from this device on this bus * @BUS_NOTIFY_DRIVER_NOT_BOUND: a driver failed to be bound to this device on this bus * * These are the value passed to a bus notifier when a specific event happens. * * Note that bus notifiers are likely to be called with the device lock already * held by the driver core, so be careful in any notifier callback as to what * you do with the device structure. * * All bus notifiers are called with the target struct device * as an argument. */ enum bus_notifier_event { BUS_NOTIFY_ADD_DEVICE, BUS_NOTIFY_DEL_DEVICE, BUS_NOTIFY_REMOVED_DEVICE, BUS_NOTIFY_BIND_DRIVER, BUS_NOTIFY_BOUND_DRIVER, BUS_NOTIFY_UNBIND_DRIVER, BUS_NOTIFY_UNBOUND_DRIVER, BUS_NOTIFY_DRIVER_NOT_BOUND, }; extern struct kset *bus_get_kset(const struct bus_type *bus); struct device *bus_get_dev_root(const struct bus_type *bus); /** * enum probe_type - device driver probe type to try * Device drivers may opt in for special handling of their * respective probe routines. This tells the core what to * expect and prefer. * * @PROBE_DEFAULT_STRATEGY: Used by drivers that work equally well * whether probed synchronously or asynchronously. * @PROBE_PREFER_ASYNCHRONOUS: Drivers for "slow" devices which * probing order is not essential for booting the system may * opt into executing their probes asynchronously. * @PROBE_FORCE_SYNCHRONOUS: Use this to annotate drivers that need * their probe routines to run synchronously with driver and * device registration (with the exception of -EPROBE_DEFER * handling - re-probing always ends up being done asynchronously). * * Note that the end goal is to switch the kernel to use asynchronous * probing by default, so annotating drivers with * %PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us * to speed up boot process while we are validating the rest of the * drivers. */ enum probe_type { PROBE_DEFAULT_STRATEGY, PROBE_PREFER_ASYNCHRONOUS, PROBE_FORCE_SYNCHRONOUS, }; /** * struct device_driver_rh - Red Hat KABI extension struct */ struct device_driver_rh { }; /** * struct device_driver - The basic device driver structure * @name: Name of the device driver. * @bus: The bus which the device of this driver belongs to. * @owner: The module owner. * @mod_name: Used for built-in modules. * @suppress_bind_attrs: Disables bind/unbind via sysfs. * @probe_type: Type of the probe (synchronous or asynchronous) to use. * @of_match_table: The open firmware table. * @acpi_match_table: The ACPI match table. * @probe: Called to query the existence of a specific device, * whether this driver can work with it, and bind the driver * to a specific device. * @sync_state: Called to sync device state to software state after all the * state tracking consumers linked to this device (present at * the time of late_initcall) have successfully bound to a * driver. If the device has no consumers, this function will * be called at late_initcall_sync level. If the device has * consumers that are never bound to a driver, this function * will never get called until they do. * @remove: Called when the device is removed from the system to * unbind a device from this driver. * @shutdown: Called at shut-down time to quiesce the device. * @suspend: Called to put the device to sleep mode. Usually to a * low power state. * @resume: Called to bring a device from sleep mode. * @groups: Default attributes that get created by the driver core * automatically. * @dev_groups: Additional attributes attached to device instance once the * it is bound to the driver. * @pm: Power management operations of the device which matched * this driver. * @coredump: Called when sysfs entry is written to. The device driver * is expected to call the dev_coredump API resulting in a * uevent. * @p: Driver core's private data, no one other than the driver * core can touch this. * * The device driver-model tracks all of the drivers known to the system. * The main reason for this tracking is to enable the driver core to match * up drivers with new devices. Once drivers are known objects within the * system, however, a number of other things become possible. Device drivers * can export information and configuration variables that are independent * of any specific device. */ struct device_driver { const char *name; struct bus_type *bus; struct module *owner; const char *mod_name; /* used for built-in modules */ bool suppress_bind_attrs; /* disables bind/unbind via sysfs */ enum probe_type probe_type; const struct of_device_id *of_match_table; const struct acpi_device_id *acpi_match_table; int (*probe) (struct device *dev); int (*remove) (struct device *dev); void (*shutdown) (struct device *dev); int (*suspend) (struct device *dev, pm_message_t state); int (*resume) (struct device *dev); const struct attribute_group **groups; const struct dev_pm_ops *pm; void (*coredump) (struct device *dev); struct driver_private *p; RH_KABI_USE(1, const struct attribute_group **dev_groups) RH_KABI_USE(2, void (*sync_state)(struct device *dev)) RH_KABI_RESERVE(3) RH_KABI_RESERVE(4) RH_KABI_AUX_PTR(device_driver); }; extern int __must_check driver_register(struct device_driver *drv); extern void driver_unregister(struct device_driver *drv); extern struct device_driver *driver_find(const char *name, struct bus_type *bus); extern int driver_probe_done(void); extern void wait_for_device_probe(void); void __init wait_for_init_devices_probe(void); /* sysfs interface for exporting driver attributes */ struct driver_attribute { struct attribute attr; ssize_t (*show)(struct device_driver *driver, char *buf); ssize_t (*store)(struct device_driver *driver, const char *buf, size_t count); }; #define DRIVER_ATTR_RW(_name) \ struct driver_attribute driver_attr_##_name = __ATTR_RW(_name) #define DRIVER_ATTR_RO(_name) \ struct driver_attribute driver_attr_##_name = __ATTR_RO(_name) #define DRIVER_ATTR_WO(_name) \ struct driver_attribute driver_attr_##_name = __ATTR_WO(_name) extern int __must_check driver_create_file(struct device_driver *driver, const struct driver_attribute *attr); extern void driver_remove_file(struct device_driver *driver, const struct driver_attribute *attr); int driver_set_override(struct device *dev, const char **override, const char *s, size_t len); extern int __must_check driver_for_each_device(struct device_driver *drv, struct device *start, void *data, int (*fn)(struct device *dev, void *)); struct device *driver_find_device(struct device_driver *drv, struct device *start, const void *data, int (*match)(struct device *dev, const void *data)); #ifdef CONFIG_ACPI /** * driver_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @driver: the driver we're iterating * @adev: ACPI_COMPANION device to match. */ static inline struct device * driver_find_device_by_acpi_dev(struct device_driver *drv, const struct acpi_device *adev) { return driver_find_device(drv, NULL, adev, device_match_acpi_dev); } #else static inline struct device * driver_find_device_by_acpi_dev(struct device_driver *drv, const void *adev) { return NULL; } #endif /** * driver_find_device_by_name - device iterator for locating a particular device * of a specific name. * @driver: the driver we're iterating * @name: name of the device to match */ static inline struct device *driver_find_device_by_name(struct device_driver *drv, const char *name) { return driver_find_device(drv, NULL, name, device_match_name); } /** * driver_find_device_by_of_node- device iterator for locating a particular device * by of_node pointer. * @driver: the driver we're iterating * @np: of_node pointer to match. */ static inline struct device * driver_find_device_by_of_node(struct device_driver *drv, const struct device_node *np) { return driver_find_device(drv, NULL, np, device_match_of_node); } /** * driver_find_device_by_fwnode- device iterator for locating a particular device * by fwnode pointer. * @driver: the driver we're iterating * @fwnode: fwnode pointer to match. */ static inline struct device * driver_find_device_by_fwnode(struct device_driver *drv, const struct fwnode_handle *fwnode) { return driver_find_device(drv, NULL, fwnode, device_match_fwnode); } /** * driver_find_device_by_devt- device iterator for locating a particular device * by devt. * @driver: the driver we're iterating * @devt: devt pointer to match. */ static inline struct device *driver_find_device_by_devt(struct device_driver *drv, dev_t devt) { return driver_find_device(drv, NULL, &devt, device_match_devt); } void driver_deferred_probe_add(struct device *dev); int driver_deferred_probe_check_state(struct device *dev); int driver_deferred_probe_check_state_continue(struct device *dev); /** * struct subsys_interface - interfaces to device functions * @name: name of the device function * @subsys: subsytem of the devices to attach to * @node: the list of functions registered at the subsystem * @add_dev: device hookup to device function handler * @remove_dev: device hookup to device function handler * * Simple interfaces attached to a subsystem. Multiple interfaces can * attach to a subsystem and its devices. Unlike drivers, they do not * exclusively claim or control devices. Interfaces usually represent * a specific functionality of a subsystem/class of devices. */ struct subsys_interface { const char *name; struct bus_type *subsys; struct list_head node; int (*add_dev)(struct device *dev, struct subsys_interface *sif); void (*remove_dev)(struct device *dev, struct subsys_interface *sif); }; int subsys_interface_register(struct subsys_interface *sif); void subsys_interface_unregister(struct subsys_interface *sif); int subsys_system_register(struct bus_type *subsys, const struct attribute_group **groups); int subsys_virtual_register(struct bus_type *subsys, const struct attribute_group **groups); /** * struct class_rh - Red Hat KABI extension struct */ struct class_rh { }; /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(RH_KABI_CONST struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(RH_KABI_CONST struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(RH_KABI_CONST struct device *dev); const struct dev_pm_ops *pm; struct subsys_private *p; RH_KABI_USE(1, void (*get_ownership)(RH_KABI_CONST struct device *dev, kuid_t *uid, kgid_t *gid)) RH_KABI_RESERVE(2) RH_KABI_RESERVE(3) RH_KABI_RESERVE(4) RH_KABI_AUX_PTR(class); }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); #ifdef CONFIG_ACPI struct acpi_device; /** * class_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @class: class type * @adev: ACPI_COMPANION device to match. */ static inline struct device * class_find_device_by_acpi_dev(struct class *class, const struct acpi_device *adev) { return class_find_device(class, NULL, adev, device_match_acpi_dev); } #else static inline struct device * class_find_device_by_acpi_dev(struct class *class, const void *adev) { return NULL; } #endif /** * class_find_device_by_name - device iterator for locating a particular device * of a specific name. * @class: class type * @name: name of the device to match */ static inline struct device *class_find_device_by_name(struct class *class, const char *name) { return class_find_device(class, NULL, name, device_match_name); } /** * class_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @class: class type * @np: of_node of the device to match. */ static inline struct device * class_find_device_by_of_node(struct class *class, const struct device_node *np) { return class_find_device(class, NULL, np, device_match_of_node); } /** * class_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @class: class type * @fwnode: fwnode of the device to match. */ static inline struct device * class_find_device_by_fwnode(struct class *class, const struct fwnode_handle *fwnode) { return class_find_device(class, NULL, fwnode, device_match_fwnode); } /** * class_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @class: class type * @devt: device type of the device to match. */ static inline struct device *class_find_device_by_devt(struct class *class, dev_t devt) { return class_find_device(class, NULL, &devt, device_match_devt); } struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) /* * The type of device, "struct device" is embedded in. A class * or bus can contain devices of different types * like "partitions" and "disks", "mouse" and "event". * This identifies the device type and carries type-specific * information, equivalent to the kobj_type of a kobject. * If "name" is specified, the uevent will contain it in * the DEVTYPE variable. */ struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(RH_KABI_CONST struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid); void (*release)(struct device *dev); const struct dev_pm_ops *pm; }; /* interface for exporting device attributes */ struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf); ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); }; struct dev_ext_attribute { struct device_attribute attr; void *var; }; ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_int(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); #define DEVICE_ATTR(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store) #define DEVICE_ATTR_PREALLOC(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_PREALLOC(_name, _mode, _show, _store) #define DEVICE_ATTR_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW(_name) #define DEVICE_ATTR_ADMIN_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW_MODE(_name, 0600) #define DEVICE_ATTR_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO(_name) #define DEVICE_ATTR_ADMIN_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO_MODE(_name, 0400) #define DEVICE_ATTR_WO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_WO(_name) #define DEVICE_ULONG_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) } #define DEVICE_INT_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) } #define DEVICE_BOOL_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) } #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) extern int device_create_file(struct device *device, const struct device_attribute *entry); extern void device_remove_file(struct device *dev, const struct device_attribute *attr); extern bool device_remove_file_self(struct device *dev, const struct device_attribute *attr); extern int __must_check device_create_bin_file(struct device *dev, const struct bin_attribute *attr); extern void device_remove_bin_file(struct device *dev, const struct bin_attribute *attr); /* device resource management */ typedef void (*dr_release_t)(struct device *dev, void *res); typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data); extern void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, const char *name) __malloc; #define devres_alloc(release, size, gfp) \ __devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release) #define devres_alloc_node(release, size, gfp, nid) \ __devres_alloc_node(release, size, gfp, nid, #release) extern void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device *, void *, void *), void *data); extern void devres_free(void *res); extern void devres_add(struct device *dev, void *res); extern void *devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); extern void *devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data); extern void *devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); extern int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); extern int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); /* devres group */ extern void * __must_check devres_open_group(struct device *dev, void *id, gfp_t gfp); extern void devres_close_group(struct device *dev, void *id); extern void devres_remove_group(struct device *dev, void *id); extern int devres_release_group(struct device *dev, void *id); /* managed devm_k.alloc/kfree for device drivers */ extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc; extern void *devm_krealloc(struct device *dev, void *ptr, size_t size, gfp_t gfp) __must_check; extern __printf(3, 0) char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) __malloc; extern __printf(3, 4) char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc; static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp) { return devm_kmalloc(dev, size, gfp | __GFP_ZERO); } static inline void *devm_kmalloc_array(struct device *dev, size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return devm_kmalloc(dev, bytes, flags); } static inline void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags) { return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); } extern void devm_kfree(struct device *dev, const void *p); extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc; extern const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp); extern void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp); extern unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order); extern void devm_free_pages(struct device *dev, unsigned long addr); void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res); /* allows to add/remove a custom action to devres stack */ void devm_remove_action(struct device *dev, void (*action)(void *), void *data); void devm_release_action(struct device *dev, void (*action)(void *), void *data); int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name); #define devm_add_action(release, action, data) \ __devm_add_action(release, action, data, #action) static inline int devm_add_action_or_reset(struct device *dev, void (*action)(void *), void *data) { int ret; ret = devm_add_action(dev, action, data); if (ret) action(data); return ret; } /** * devm_alloc_percpu - Resource-managed alloc_percpu * @dev: Device to allocate per-cpu memory for * @type: Type to allocate per-cpu memory for * * Managed alloc_percpu. Per-cpu memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ #define devm_alloc_percpu(dev, type) \ ((typeof(type) __percpu *)__devm_alloc_percpu((dev), sizeof(type), \ __alignof__(type))) void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, size_t align); void devm_free_percpu(struct device *dev, void __percpu *pdata); struct device_dma_parameters { /* * a low level driver may set these to teach IOMMU code about * sg limitations. */ unsigned int max_segment_size; unsigned long segment_boundary_mask; RH_KABI_EXTEND(unsigned int min_align_mask) }; typedef void *(*devcon_match_fn_t)(const struct fwnode_handle *fwnode, const char *id, void *data); void *fwnode_connection_find_match(const struct fwnode_handle *fwnode, const char *con_id, void *data, devcon_match_fn_t match); void *device_connection_find_match(const struct device *dev, const char *con_id, void *data, devcon_match_fn_t match); int fwnode_connection_find_matches(const struct fwnode_handle *fwnode, const char *con_id, void *data, devcon_match_fn_t match, void **matches, unsigned int matches_len); /** * enum device_link_state - Device link states. * @DL_STATE_NONE: The presence of the drivers is not being tracked. * @DL_STATE_DORMANT: None of the supplier/consumer drivers is present. * @DL_STATE_AVAILABLE: The supplier driver is present, but the consumer is not. * @DL_STATE_CONSUMER_PROBE: The consumer is probing (supplier driver present). * @DL_STATE_ACTIVE: Both the supplier and consumer drivers are present. * @DL_STATE_SUPPLIER_UNBIND: The supplier driver is unbinding. */ enum device_link_state { DL_STATE_NONE = -1, DL_STATE_DORMANT = 0, DL_STATE_AVAILABLE, DL_STATE_CONSUMER_PROBE, DL_STATE_ACTIVE, DL_STATE_SUPPLIER_UNBIND, }; /* * Device link flags. * * STATELESS: The core will not remove this link automatically. * AUTOREMOVE_CONSUMER: Remove the link automatically on consumer driver unbind. * PM_RUNTIME: If set, the runtime PM framework will use this link. * RPM_ACTIVE: Run pm_runtime_get_sync() on the supplier during link creation. * AUTOREMOVE_SUPPLIER: Remove the link automatically on supplier driver unbind. * AUTOPROBE_CONSUMER: Probe consumer driver automatically after supplier binds. * MANAGED: The core tracks presence of supplier/consumer drivers (internal). * SYNC_STATE_ONLY: Link only affects sync_state() behavior. * INFERRED: Inferred from data (eg: firmware) and not from driver actions. */ #define DL_FLAG_STATELESS BIT(0) #define DL_FLAG_AUTOREMOVE_CONSUMER BIT(1) #define DL_FLAG_PM_RUNTIME BIT(2) #define DL_FLAG_RPM_ACTIVE BIT(3) #define DL_FLAG_AUTOREMOVE_SUPPLIER BIT(4) #define DL_FLAG_AUTOPROBE_CONSUMER BIT(5) #define DL_FLAG_MANAGED BIT(6) #define DL_FLAG_SYNC_STATE_ONLY BIT(7) #define DL_FLAG_INFERRED BIT(8) #define DL_FLAG_CYCLE BIT(9) /** * enum dl_dev_state - Device driver presence tracking information. * @DL_DEV_NO_DRIVER: There is no driver attached to the device. * @DL_DEV_PROBING: A driver is probing. * @DL_DEV_DRIVER_BOUND: The driver has been bound to the device. * @DL_DEV_UNBINDING: The driver is unbinding from the device. */ enum dl_dev_state { DL_DEV_NO_DRIVER = 0, DL_DEV_PROBING, DL_DEV_DRIVER_BOUND, DL_DEV_UNBINDING, }; /** * enum device_removable - Whether the device is removable. The criteria for a * device to be classified as removable is determined by its subsystem or bus. * @DEVICE_REMOVABLE_NOT_SUPPORTED: This attribute is not supported for this * device (default). * @DEVICE_REMOVABLE_UNKNOWN: Device location is Unknown. * @DEVICE_FIXED: Device is not removable by the user. * @DEVICE_REMOVABLE: Device is removable by the user. */ enum device_removable { DEVICE_REMOVABLE_NOT_SUPPORTED = 0, /* must be 0 */ DEVICE_REMOVABLE_UNKNOWN, DEVICE_FIXED, DEVICE_REMOVABLE, }; /** * struct dev_links_info - Device data related to device links. * @suppliers: List of links to supplier devices. * @consumers: List of links to consumer devices. * @status: Driver status information. */ struct dev_links_info { struct list_head suppliers; struct list_head consumers; enum dl_dev_state status; }; /** RHEL NOTE: * upstream commit e2ae9bcc4aaa (driver core: Add support for linking devices * during device addition) added 'struct list_head needs_suppliers' to the * dev_links_info struct. It has not been added here but is instead in one * of the RH_KABI fields of struct device. If it had been added to * dev_links_info, its use in struct device as an entry (vs a pointer to an * entry) would break kABI. A shadow struct could have been used instead, * however for just the one entry it seemed overkill; should there be a need * for additional entries to struct dev_links_info, that should be revisited. * * upstream commit bcbbcfd57247 (driver core: Allow a device to wait on optional * suppliers) adds another entry: bool need_for_probe. Use the same technique * as above for the same reasons. * * upstream commit fc5a251d0fd7 (driver core: Add sync_state driver/bus * callback) * adds yet another entry: defer_sync. Rinse and repeat. */ struct device_extended_rh { }; /** * enum device_physical_location_panel - Describes which panel surface of the * system's housing the device connection point resides on. * @DEVICE_PANEL_TOP: Device connection point is on the top panel. * @DEVICE_PANEL_BOTTOM: Device connection point is on the bottom panel. * @DEVICE_PANEL_LEFT: Device connection point is on the left panel. * @DEVICE_PANEL_RIGHT: Device connection point is on the right panel. * @DEVICE_PANEL_FRONT: Device connection point is on the front panel. * @DEVICE_PANEL_BACK: Device connection point is on the back panel. * @DEVICE_PANEL_UNKNOWN: The panel with device connection point is unknown. */ enum device_physical_location_panel { DEVICE_PANEL_TOP, DEVICE_PANEL_BOTTOM, DEVICE_PANEL_LEFT, DEVICE_PANEL_RIGHT, DEVICE_PANEL_FRONT, DEVICE_PANEL_BACK, DEVICE_PANEL_UNKNOWN, }; /** * enum device_physical_location_vertical_position - Describes vertical * position of the device connection point on the panel surface. * @DEVICE_VERT_POS_UPPER: Device connection point is at upper part of panel. * @DEVICE_VERT_POS_CENTER: Device connection point is at center part of panel. * @DEVICE_VERT_POS_LOWER: Device connection point is at lower part of panel. */ enum device_physical_location_vertical_position { DEVICE_VERT_POS_UPPER, DEVICE_VERT_POS_CENTER, DEVICE_VERT_POS_LOWER, }; /** * enum device_physical_location_horizontal_position - Describes horizontal * position of the device connection point on the panel surface. * @DEVICE_HORI_POS_LEFT: Device connection point is at left part of panel. * @DEVICE_HORI_POS_CENTER: Device connection point is at center part of panel. * @DEVICE_HORI_POS_RIGHT: Device connection point is at right part of panel. */ enum device_physical_location_horizontal_position { DEVICE_HORI_POS_LEFT, DEVICE_HORI_POS_CENTER, DEVICE_HORI_POS_RIGHT, }; /** * struct device_physical_location - Device data related to physical location * of the device connection point. * @panel: Panel surface of the system's housing that the device connection * point resides on. * @vertical_position: Vertical position of the device connection point within * the panel. * @horizontal_position: Horizontal position of the device connection point * within the panel. * @dock: Set if the device connection point resides in a docking station or * port replicator. * @lid: Set if this device connection point resides on the lid of laptop * system. */ struct device_physical_location { enum device_physical_location_panel panel; enum device_physical_location_vertical_position vertical_position; enum device_physical_location_horizontal_position horizontal_position; bool dock; bool lid; }; /** * struct device - The basic device structure * @parent: The device's "parent" device, the device to which it is attached. * In most cases, a parent device is some sort of bus or host * controller. If parent is NULL, the device, is a top-level device, * which is not usually what you want. * @p: Holds the private data of the driver core portions of the device. * See the comment of the struct device_private for detail. * @kobj: A top-level, abstract class from which other classes are derived. * @init_name: Initial name of the device. * @type: The type of device. * This identifies the device type and carries type-specific * information. * @mutex: Mutex to synchronize calls to its driver. * @bus: Type of bus device is on. * @driver: Which driver has allocated this * @platform_data: Platform data specific to the device. * Example: For devices on custom boards, as typical of embedded * and SOC based hardware, Linux often uses platform_data to point * to board-specific structures describing devices and how they * are wired. That can include what ports are available, chip * variants, which GPIO pins act in what additional roles, and so * on. This shrinks the "Board Support Packages" (BSPs) and * minimizes board-specific #ifdefs in drivers. * @driver_data: Private pointer for driver specific info. * @links: Links to suppliers and consumers of this device. * @power: For device power management. * See Documentation/driver-api/pm/devices.rst for details. * @pm_domain: Provide callbacks that are executed during system suspend, * hibernation, system resume and during runtime PM transitions * along with subsystem-level and driver-level callbacks. * @pins: For device pin management. * See Documentation/driver-api/pin-control.rst for details. * @msi_lock: Lock to protect MSI mask cache and mask register * @msi_list: Hosts MSI descriptors * @msi_domain: The generic MSI domain this device is using. * @numa_node: NUMA node this device is close to. * @dma_ops: DMA mapping operations for this device. * @dma_mask: Dma mask (if dma'ble device). * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all * hardware supports 64-bit addresses for consistent allocations * such descriptors. * @bus_dma_limit: Limit of an upstream bridge or bus which imposes a smaller * DMA limit than the device itself supports. * @dma_range_map: map for DMA memory ranges relative to that of RAM * @dma_parms: A low level driver may set these to teach IOMMU code about * segment limitations. * @dma_pools: Dma pools (if dma'ble device). * @dma_mem: Internal for coherent mem override. * @cma_area: Contiguous memory area for dma allocations * @dma_io_tlb_mem: Pointer to the swiotlb pool used. Not for driver use. * @archdata: For arch-specific additions. * @of_node: Associated device tree node. * @fwnode: Associated device node supplied by platform firmware. * @devt: For creating the sysfs "dev". * @id: device instance * @devres_lock: Spinlock to protect the resource of the device. * @devres_head: The resources list of the device. * @knode_class: The node used to add the device to the class list. * @class: The class of the device. * @groups: Optional attribute groups. * @release: Callback to free the device after all references have * gone away. This should be set by the allocator of the * device (i.e. the bus driver that discovered the device). * @iommu_group: IOMMU group the device belongs to. * @iommu: Per device generic IOMMU runtime data * @physical_location: Describes physical location of the device connection * point in the system housing. * @removable: Whether the device can be removed from the system. This * should be set by the subsystem / bus driver that discovered * the device. * * @offline_disabled: If set, the device is permanently online. * @offline: Set after successful invocation of bus type's .offline(). * @of_node_reused: Set if the device-tree node is shared with an ancestor * device. * @state_synced: The hardware state of this device has been synced to match * the software state of this device by calling the driver/bus * sync_state() callback. * @can_match: The device has matched with a driver at least once or it is in * a bus (like AMBA) which can't check for matching drivers until * other devices probe successfully. * @dma_coherent: this particular device is dma coherent, even if the * architecture supports non-coherent devices. * @dma_ops_bypass: If set to %true then the dma_ops are bypassed for the * streaming DMA operations (->map_* / ->unmap_* / ->sync_*), * and optionall (if the coherent mask is large enough) also * for dma allocations. This flag is managed by the dma ops * instance from ->dma_supported. * * At the lowest level, every device in a Linux system is represented by an * instance of struct device. The device structure contains the information * that the device model core needs to model the system. Most subsystems, * however, track additional information about the devices they host. As a * result, it is rare for devices to be represented by bare device structures; * instead, that structure, like kobject structures, is usually embedded within * a higher-level representation of the device. */ struct device { struct device *parent; struct device_private *p; struct kobject kobj; const char *init_name; /* initial name of the device */ const struct device_type *type; struct mutex mutex; /* mutex to synchronize calls to * its driver. */ struct bus_type *bus; /* type of bus device is on */ struct device_driver *driver; /* which driver has allocated this device */ void *platform_data; /* Platform specific data, device core doesn't touch it */ void *driver_data; /* Driver data, set and get with dev_set/get_drvdata */ struct dev_links_info links; struct dev_pm_info power; struct dev_pm_domain *pm_domain; #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN struct irq_domain *msi_domain; #endif #ifdef CONFIG_PINCTRL struct dev_pin_info *pins; #endif #ifdef CONFIG_GENERIC_MSI_IRQ struct list_head msi_list; #endif #ifdef CONFIG_NUMA int numa_node; /* NUMA node this device is close to */ #endif #ifdef CONFIG_DMA_OPS const struct dma_map_ops *dma_ops; #endif u64 *dma_mask; /* dma mask (if dma'able device) */ u64 coherent_dma_mask;/* Like dma_mask, but for alloc_coherent mappings as not all hardware supports 64 bit addresses for consistent allocations such descriptors. */ u64 RH_KABI_RENAME(bus_dma_mask, bus_dma_limit); /* upstream dma constraint */ RH_KABI_REPLACE(unsigned long dma_pfn_offset, const struct bus_dma_region *dma_range_map) struct device_dma_parameters *dma_parms; struct list_head dma_pools; /* dma pools (if dma'ble) */ struct dma_coherent_mem *dma_mem; /* internal for coherent mem override */ #ifdef CONFIG_DMA_CMA struct cma *cma_area; /* contiguous memory area for dma allocations */ #endif /* arch specific additions */ struct dev_archdata archdata; struct device_node *of_node; /* associated device tree node */ struct fwnode_handle *fwnode; /* firmware device node */ dev_t devt; /* dev_t, creates the sysfs "dev" */ u32 id; /* device instance */ spinlock_t devres_lock; struct list_head devres_head; struct klist_node knode_class; struct class *class; const struct attribute_group **groups; /* optional groups */ void (*release)(struct device *dev); struct iommu_group *iommu_group; RH_KABI_DEPRECATE(struct iommu_fwspec *, iommu_fwspec) /* RHEL8 kabi note: Total of 64-bits of bool can be defined. */ bool offline_disabled:1; bool offline:1; bool of_node_reused:1; RH_KABI_FILL_HOLE(bool state_synced:1) RH_KABI_FILL_HOLE(bool can_match:1) #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) bool dma_coherent:1; #endif #ifdef CONFIG_DMA_OPS_BYPASS RH_KABI_FILL_HOLE(bool dma_ops_bypass : 1) #endif /* Use device_extended after all RESERVE fields used */ RH_KABI_USE(1, struct dev_iommu *iommu) #ifdef CONFIG_SWIOTLB RH_KABI_USE(2, struct io_tlb_mem *dma_io_tlb_mem) #else RH_KABI_RESERVE(2) #endif /* NB: See the note for struct dev_links_info: */ RH_KABI_USE(3, struct device_physical_location *physical_location) RH_KABI_RESERVE(4) RH_KABI_RESERVE(5) RH_KABI_USE(6, 7, struct list_head links_defer_sync) RH_KABI_USE(8, enum device_removable removable) RH_KABI_USE(9, raw_spinlock_t msi_lock) RH_KABI_RESERVE(10) RH_KABI_RESERVE(11) RH_KABI_RESERVE(12) RH_KABI_RESERVE(13) RH_KABI_RESERVE(14) RH_KABI_RESERVE(15) RH_KABI_RESERVE(16) RH_KABI_AUX_PTR(device_extended) }; /** * struct device_link - Device link representation. * @supplier: The device on the supplier end of the link. * @s_node: Hook to the supplier device's list of links to consumers. * @consumer: The device on the consumer end of the link. * @c_node: Hook to the consumer device's list of links to suppliers. * @link_dev: device used to expose link details in sysfs * @status: The state of the link (with respect to the presence of drivers). * @flags: Link flags. * @rpm_active: Whether or not the consumer device is runtime-PM-active. * @kref: Count repeated addition of the same link. * @rcu_head: An RCU head to use for deferred execution of SRCU callbacks. * @supplier_preactivated: Supplier has been made active before consumer probe. */ struct device_link { struct device *supplier; struct list_head s_node; struct device *consumer; struct list_head c_node; struct device link_dev; enum device_link_state status; u32 flags; refcount_t rpm_active; struct kref kref; #ifdef CONFIG_SRCU struct rcu_head rcu_head; #endif bool supplier_preactivated; /* Owned by consumer probe. */ }; #define kobj_to_dev(__kobj) container_of_const(__kobj, struct device, kobj) /** * device_iommu_mapped - Returns true when the device DMA is translated * by an IOMMU * @dev: Device to perform the check on */ static inline bool device_iommu_mapped(struct device *dev) { return (dev->iommu_group != NULL); } /* Get the wakeup routines, which depend on struct device */ #include <linux/pm_wakeup.h> static inline const char *dev_name(const struct device *dev) { /* Use the init name until the kobject becomes available */ if (dev->init_name) return dev->init_name; return kobject_name(&dev->kobj); } /** * dev_bus_name - Return a device's bus/class name, if at all possible * @dev: struct device to get the bus/class name of * * Will return the name of the bus/class the device is attached to. If it is * not attached to a bus/class, an empty string will be returned. */ static inline const char *dev_bus_name(const struct device *dev) { return dev->bus ? dev->bus->name : (dev->class ? dev->class->name : ""); } extern __printf(2, 3) int dev_set_name(struct device *dev, const char *name, ...); #ifdef CONFIG_NUMA static inline int dev_to_node(struct device *dev) { return dev->numa_node; } static inline void set_dev_node(struct device *dev, int node) { dev->numa_node = node; } #else static inline int dev_to_node(struct device *dev) { return NUMA_NO_NODE; } static inline void set_dev_node(struct device *dev, int node) { } #endif static inline struct irq_domain *dev_get_msi_domain(const struct device *dev) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN return dev->msi_domain; #else return NULL; #endif } static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN dev->msi_domain = d; #endif } static inline void *dev_get_drvdata(const struct device *dev) { return dev->driver_data; } static inline void dev_set_drvdata(struct device *dev, void *data) { dev->driver_data = data; } static inline struct pm_subsys_data *dev_to_psd(struct device *dev) { return dev ? dev->power.subsys_data : NULL; } static inline unsigned int dev_get_uevent_suppress(const struct device *dev) { return dev->kobj.uevent_suppress; } static inline void dev_set_uevent_suppress(struct device *dev, int val) { dev->kobj.uevent_suppress = val; } static inline int device_is_registered(struct device *dev) { return dev->kobj.state_in_sysfs; } static inline void device_enable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = true; } static inline void device_disable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = false; } static inline bool device_async_suspend_enabled(struct device *dev) { return !!dev->power.async_suspend; } static inline bool device_pm_not_required(struct device *dev) { return dev->power.no_pm; } static inline void device_set_pm_not_required(struct device *dev) { dev->power.no_pm = true; } static inline void dev_pm_syscore_device(struct device *dev, bool val) { #ifdef CONFIG_PM_SLEEP dev->power.syscore = val; #endif } static inline void dev_pm_set_driver_flags(struct device *dev, u32 flags) { dev->power.driver_flags = flags; } static inline bool dev_pm_test_driver_flags(struct device *dev, u32 flags) { return !!(dev->power.driver_flags & flags); } static inline void device_lock(struct device *dev) { mutex_lock(&dev->mutex); } static inline int device_lock_interruptible(struct device *dev) { return mutex_lock_interruptible(&dev->mutex); } static inline int device_trylock(struct device *dev) { return mutex_trylock(&dev->mutex); } static inline void device_unlock(struct device *dev) { mutex_unlock(&dev->mutex); } static inline void device_lock_assert(struct device *dev) { lockdep_assert_held(&dev->mutex); } static inline struct device_node *dev_of_node(struct device *dev) { if (!IS_ENABLED(CONFIG_OF)) return NULL; return dev->of_node; } void driver_init(void); static inline bool dev_has_sync_state(struct device *dev) { if (!dev) return false; if (dev->driver && dev->driver->sync_state) return true; if (dev->bus && dev->bus->sync_state) return true; return false; } static inline void dev_set_removable(struct device *dev, enum device_removable removable) { dev->removable = removable; } static inline bool dev_is_removable(struct device *dev) { return dev->removable == DEVICE_REMOVABLE; } static inline bool dev_removable_is_valid(struct device *dev) { return dev->removable != DEVICE_REMOVABLE_NOT_SUPPORTED; } /* * High level routines for use by the bus drivers */ extern int __must_check device_register(struct device *dev); extern void device_unregister(struct device *dev); extern void device_initialize(struct device *dev); extern int __must_check device_add(struct device *dev); extern void device_del(struct device *dev); extern int device_for_each_child(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); extern int device_for_each_child_reverse(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *device_find_child(struct device *dev, void *data, int (*match)(struct device *dev, void *data)); extern struct device *device_find_child_by_name(struct device *parent, const char *name); extern struct device *device_find_any_child(struct device *parent); extern int device_rename(struct device *dev, const char *new_name); extern int device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order); extern int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); extern int device_is_dependent(struct device *dev, void *target); static inline bool device_supports_offline(struct device *dev) { return dev->bus && dev->bus->offline && dev->bus->online; } extern void lock_device_hotplug(void); extern void unlock_device_hotplug(void); extern int lock_device_hotplug_sysfs(void); extern int device_offline(struct device *dev); extern int device_online(struct device *dev); extern void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode); extern void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void device_set_of_node_from_dev(struct device *dev, const struct device *dev2); void device_set_node(struct device *dev, struct fwnode_handle *fwnode); static inline int dev_num_vf(struct device *dev) { if (dev->bus && dev->bus->num_vf) return dev->bus->num_vf(dev); return 0; } /* * Root device objects for grouping under /sys/devices */ extern struct device *__root_device_register(const char *name, struct module *owner); /* This is a macro to avoid include problems with THIS_MODULE */ #define root_device_register(name) \ __root_device_register(name, THIS_MODULE) extern void root_device_unregister(struct device *root); static inline void *dev_get_platdata(const struct device *dev) { return dev->platform_data; } /* * Manual binding of a device to driver. See drivers/base/bus.c * for information on use. */ int __must_check device_driver_attach(struct device_driver *drv, struct device *dev); extern int __must_check device_bind_driver(struct device *dev); extern void device_release_driver(struct device *dev); extern int __must_check device_attach(struct device *dev); extern int __must_check driver_attach(struct device_driver *drv); extern void device_initial_probe(struct device *dev); extern int __must_check device_reprobe(struct device *dev); extern bool device_is_bound(struct device *dev); /* * Easy functions for dynamically creating devices on the fly */ extern __printf(5, 6) struct device *device_create(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...); extern __printf(6, 7) struct device *device_create_with_groups(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); extern void device_destroy(struct class *cls, dev_t devt); extern int __must_check device_add_groups(struct device *dev, const struct attribute_group **groups); extern void device_remove_groups(struct device *dev, const struct attribute_group **groups); static inline int __must_check device_add_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_add_groups(dev, groups); } static inline void device_remove_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_remove_groups(dev, groups); } extern int __must_check devm_device_add_groups(struct device *dev, const struct attribute_group **groups); extern int __must_check devm_device_add_group(struct device *dev, const struct attribute_group *grp); /* * Platform "fixup" functions - allow the platform to have their say * about devices and actions that the general device layer doesn't * know about. */ /* Notify platform of device discovery */ extern int (*platform_notify)(struct device *dev); extern int (*platform_notify_remove)(struct device *dev); /* * get_device - atomically increment the reference count for the device. * */ extern struct device *get_device(struct device *dev); extern void put_device(struct device *dev); extern bool kill_device(struct device *dev); #ifdef CONFIG_DEVTMPFS extern int devtmpfs_create_node(struct device *dev); extern int devtmpfs_delete_node(struct device *dev); extern int devtmpfs_mount(const char *mntdir); #else static inline int devtmpfs_create_node(struct device *dev) { return 0; } static inline int devtmpfs_delete_node(struct device *dev) { return 0; } static inline int devtmpfs_mount(const char *mountpoint) { return 0; } #endif /* drivers/base/power/shutdown.c */ extern void device_shutdown(void); /* debugging and troubleshooting/diagnostic helpers. */ extern const char *dev_driver_string(const struct device *dev); /* Device links interface. */ struct device_link *device_link_add(struct device *consumer, struct device *supplier, u32 flags); void device_link_del(struct device_link *link); void device_link_remove(void *consumer, struct device *supplier); void device_links_supplier_sync_state_pause(void); void device_links_supplier_sync_state_resume(void); extern __printf(3, 4) int dev_err_probe(const struct device *dev, int err, const char *fmt, ...); /* Create alias, so I can be autoloaded. */ #define MODULE_ALIAS_CHARDEV(major,minor) \ MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_CHARDEV_MAJOR(major) \ MODULE_ALIAS("char-major-" __stringify(major) "-*") #ifdef CONFIG_SYSFS_DEPRECATED extern long sysfs_deprecated; #else #define sysfs_deprecated 0 #endif /** * module_driver() - Helper macro for drivers that don't do anything * special in module init/exit. This eliminates a lot of boilerplate. * Each module may only use this macro once, and calling it replaces * module_init() and module_exit(). * * @__driver: driver name * @__register: register function for this driver type * @__unregister: unregister function for this driver type * @...: Additional arguments to be passed to __register and __unregister. * * Use this macro to construct bus specific macros for registering * drivers, and do not use it on its own. */ #define module_driver(__driver, __register, __unregister, ...) \ static int __init __driver##_init(void) \ { \ return __register(&(__driver) , ##__VA_ARGS__); \ } \ module_init(__driver##_init); \ static void __exit __driver##_exit(void) \ { \ __unregister(&(__driver) , ##__VA_ARGS__); \ } \ module_exit(__driver##_exit); /** * builtin_driver() - Helper macro for drivers that don't do anything * special in init and have no exit. This eliminates some boilerplate. * Each driver may only use this macro once, and calling it replaces * device_initcall (or in some cases, the legacy __initcall). This is * meant to be a direct parallel of module_driver() above but without * the __exit stuff that is not used for builtin cases. * * @__driver: driver name * @__register: register function for this driver type * @...: Additional arguments to be passed to __register * * Use this macro to construct bus specific macros for registering * drivers, and do not use it on its own. */ #define builtin_driver(__driver, __register, ...) \ static int __init __driver##_init(void) \ { \ return __register(&(__driver) , ##__VA_ARGS__); \ } \ device_initcall(__driver##_init); #endif /* _DEVICE_H_ */